5 APR 1948

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 1498

EFFECT OF LOCAL BOILING AND AIR ENTRAINMENT ON TEMPERATURES OF LIQUID-COOLED CYLINDERS

By A. P. Colburn, Carl Gazley, Jr., E. M. Schoenborn, and C. S. Sutton

University of Delaware

Washington

March 1948

FOR REFERENCE

NOT TO BE TAKEN FROM THIS ROOM

NACA LIBRARI

LAMBLEY MEMORIAL AERORAUTICAL

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1498

EFFECT OF LOCAL BOILING AND AIR ENTRAINMENT

ON TEMPERATURES OF LIQUID-COOLED CYLINDERS

By A. P. Colburn, Carl Gazley, Jr., E. M. Schoenborn, and C. S. Sutton

SUMMARY

The design and the optimum operation of cooling jackets for liquid-cooled engines require an understanding of the heat-transfer character-istics of the coolants under the special conditions encountered of high heat fluxes, relatively high metal temperatures, and appreciable amounts of entrained air in the coolant flow. Owing to the difficulties of evaluating these conditions on operating engines, a bench-rig apparatus was designed which would approximate engine-jacket conditions, except that the liquid flow was maintained uniform around the cylinder in order that the results could be related to the literature of forced-convection heat transfer. This report gives a description of the apparatus and data on water and methanol.

Results are shown as coolant-film coefficients of heat transfer; these are correlated as dimensionless parameters (j-factors) as a function of Reynolds number. At low metal-wall temperatures, that is, when the wall-coolant interface temperature is below the boiling point of the coolant under existing pressures, data are in close agreement with the well-known equations for heat transfer in round pipes and in annular spaces. At high metal-wall temperatures, that is, when the interface temperature is above the coolant boiling point, local-boiling effects can be observed. Heat-transfer rates under the latter conditions are found to depend primarily upon the temperature excess of the wall over the liquid boiling point and upon the velocity of the coolant past the heating surface. It is shown that, particularly at low liquid velocities, the heat-transfer coefficient increases with increasing values of this temperature difference, with a maximum increase found of 300 percent. The effect of entrained air is also shown to increase heat-transfer coefficients, especially at low liquid velocities, with a maximum increase found of 100 percent. The effect of coolant pressure is merely to increase the boiling point and so decrease the temperature excess.

The results of this study have been extended to show the typical effect of the local-boiling phenomenon on metal-wall temperatures. At low coolant velocities excessive metal temperatures would normally prevail,

but with low-boiling coolants these temperatures are drastically reduced. The effect is even more spectacular for methanol than for water, owing to the poorer heat-transfer qualities when nonboiling. For the conditions chosen, with a methanol coolant velocity of 1 foot per second, the metal-wall temperature would run 400° F if the coolant boiling point was higher than the surface temperature; if the coolant boiling point was, say, 40° F below the surface temperature, the metal temperature would be only 220° F.

INTRODUCTION

Evaluation of the fundamental relations existing between the rates of heat transfer and the controlling liquid properties for liquid coolants in the jackets of liquid-cooled aircraft engines is complicated by a lack of knowledge of the temperature and velocity distributions within the jacket, of the phenomena occurring at the metal-liquid interface, of the effects of coolant pressure and of entrained gases, and of numerous other variables which are difficult to control and measure. The present inability to determine with precision these variables in a full-scale engine assembly or single-cylinder rig indicates a need for a suitable bench-rig apparatus for this purpose. Although the geometrical patterns of such an apparatus might not necessarily follow those in an actual engine jacket, nevertheless much valuable information can be obtained by a fundamental approach to the problem with a simple construction permitting carefully controlled conditions.

A bench-rig apparatus for this purpose should permit an accurate determination of such factors as coolant velocities, coolant and metal-wall temperatures, and coolant pressures and be so arranged that various types of liquid coolants can be studied under similar operating conditions. It is desirable that the metal-coolant interface be open to visual observation so that effects such as local boiling can be studied. (Local boiling is defined as that boiling which occurs in the liquid layer adjacent to a surface, the temperature of which being above the boiling point of the liquid and the main body of the liquid being considerably below the boiling point.) Means of providing for relatively high heat fluxes are of prime consideration, and a choice between electric, steam, or gas-combustion heating must be considered. Such a choice would be influenced by the degree to which individual resistances to heat transfer between the heating source and the coolant can be evaluated with certainty.

The present study is concerned with the effects of local boiling and entrained gases on the rates of heat transfer at the solid-liquid interface. Local boiling undoubtedly occurs in the jackets of liquid-cooled aircraft engines since portions of the cylinder-wall and head temperatures are often above the boiling point of the coolant used. Entrainment of air or other gases is also likely in coolant systems. It is expected that both local boiling and entrainment of gases would increase the heat-transfer rate due to increased turbulence.

The only mention of local boiling found in the literature is that given in references 1 and 2 in connection with data in the preheating section of a boiler. In these investigations heat-transfer rates were obtained two to four times those predicted by empirical equations for the warming of liquids. This increased heat transfer was attributed to "(a) increased turbulence resulting from temporary vaporization in the superheated film adjacent to the hot wall, followed by condensation in the bulk of the liquid stream, and (b) turbulence resulting from the surging flow inside the tubes." However, in these investigations the primary interest was the boiling rather than the preheating section, and no correlation of the preheating data was offered except to show that, in the case of benzene-oil mixtures, the preheating rate was approximately twice the predicted values over a large range.

The present report describes a steam-heated apparatus designed for the purpose of studying high heat-transfer rates between hot metal surfaces and coolants in jackets to fulfill the following purposes:
(1) To permit a check against literature data for normal conditions,
(2) to permit evaluation of the effect of metal temperatures existing above the boiling point of the coolant under varying conditions of flow rate, and (3) to permit determination of the effect of entrained gases. Data are given and discussed for two coolants, water and methanol. Entrainment of air was studied in the methanol only. The authors gratefully acknowledge the assistance of A. Wurster, Andale Company, Philadelphia, in designing the heat-exchange unit.

This work was conducted at the University of Delaware under the sponsorship and with the financial assistance of the National Advisory Committee for Aeronautics.

SYMBOLS

- Ao outside area of copper tube including effective heat-transfer area of flange, square feet
- C specific heat of coolant, Btu/(lb)(OF)
- D₁ outside diameter of copper tube, feet
- D₂ inside diameter of glass tube, feet
- D_e equivalent diameter of annulus, feet $(D_2 D_1)$
- G mass velocity of coolant, pounds/(hr)(sq ft)
- H enthalpy of saturated liquid coolant above 320 F, Btu/pound

- h_c heat-transfer coefficient of coolant film based on A_O,
 Btu/(hr)(sq ft)(OF)
- h_d heat-transfer coefficient of dirt film based on A_O, Btu/(hr)(sq ft)(^OF)
- h_{fg} heat of vaporization of steam, Btu/pound
- j factor, dimensionless $(h_c/c_G)(c_{\mu_R/k})^{2/3}(\mu_W/\mu_R)^{0.14}$
- k thermal conductivity of coolant, Btu/(hr)(ft)(oF)
- N_{Pr} Prandtl number, dimensionless ($C\mu_a/k$)
- P steam pressure, pounds per square inch absolute
- P₁ pressure on coolant entering exchanger, pounds per square inch absolute
- p vapor pressure of coolant, pounds per square inch absolute
- Qa volume flow rate of saturated air through annulus, cubic feet per hour
- q heat gained by coolant, Btu/hour
- q heat loss to surroundings, Btu/hour
- q_{sc} heat from steam, corrected, Btu/hour
- $N_{\rm Re}$ Reynolds number, dimensionless $(D_{\rm e}G/\mu_{\rm a})$
- S cross-sectional area of annulus, square feet
- $t_{\rm br}$ boiling temperature of coolant in exchanger, ${}^{\rm O}F$
- t_{ca} average temperature of coolant in exchanger, of
- tci temperature of coolant entering exchanger, OF
- t_{co} temperature of coolant leaving exchanger, ^oF
- t_{li} average temperature of wall-liquid interface, ${}^{O}F$
- ts steam temperature corresponding to P, OF
- tw average temperature of metal wall at thermocouple circle, of
- Δt_d temperature drop across dirt film, OF

- Δtw temperature drop from thermocouples to copper-dirt interface, OF
- V linear velocity of coolant in annulus, feet per second
- Wa mass flow rate of air, pounds per hour
- Wc mass flow rate of coolant, pounds per hour
- Ws flow rate of steam condensate, pounds per hour
- μ viscosity of coolant, pounds/(hr)(ft)
- μ_a viscosity of coolant at t_{ca}, pounds/(hr)(ft)
- $\mu_{\rm w}$ viscosity of coolant at t_{li} , pounds/(hr)(ft)
- ρ density of coolant, pounds per cubic foot
- ρ_a density of coolant at t_{ca} , pounds per cubic foot

DESCRIPTION OF APPARATUS

The test apparatus, although bearing little resemblance to the geometrical configuration of the cooling system of a liquid-cooled internal-combustion engine, was specifically designed to supply fundamental data on heat-transfer rates at a metal-coolant interface which could eventually be related to engine cooling performance. For this reason the experimental exchanger consisted essentially of a thick-walled copper tube surrounded by a glass jacket. The coolant, flowing uniformly upward in the annular space, was the heat-transfer medium under consideration, while steam condensing inside the copper tube served as the source of heat.

Heat Exchanger

Details of the heat exchanger proper are shown by the photographs (figs. 1 and 2). The copper tube, having an outside diameter of 1.660 inches, a length of 14 inches, and threaded at each end, was equipped with steel heads which served to support the copper tube and glass jacket and to provide for inlet and outlet ports for the liquid coolant.

Steam condensing inside the copper tube served as the heating medium; this particular means was selected after careful consideration indicated that neither electric heat nor gas firing would prove as desirable or convenient for the early experiments. The use of steam

appears to combine the more desirable elements of each of the other types, since it is easily controlled and permits an independent means for determining heat-transfer rates. Although the extent to which high metal-wall temperatures can be obtained is limited by the steam pressure available, the effect of high temperature differences between metal wall and coolant can, in effect, be secured_through the use of low-boiling liquids as cooling mediums.

In order to permit visual observation of the metal-liquid interface so that effects such as local boiling might be studied, the copper tube was jacketed with a heat-resisting glass tube of 2-inch inside diameter (nominal size). The latter was held in place with brass glands bolted to the heads. Synthetic rubber ring gaskets were used to center the tube and provide a tight seal up to working pressures of somewhat over 50 pounds per square inch. The ends of the glass tube extended to within 5/16 inch of the inner wall of each head to aid in obtaining uniform flow of the coolant entering the annulus; uniform flow was important so that the data could be compared with literature data on long annular spaces. An enlargement area in the heads served further to smooth out the flow and afford a more uniform velocity distribution around the periphery of the glass tube. For similar reasons, two $\frac{3}{4}$ -inch liquid connections on opposite sides of each header were provided. The annular space was purposely made small (0.34-in. total clearance) so that relatively high linear velocities past the heating surface could be maintained at low quantity throughput of the coolant. In this way a reasonable temperature rise of the liquid could be obtained to provide greater precision in evaluation of heat loads.

In order to provide a means for determining individual liquid-film, heat-transfer coefficients directly, these values being of major importance, metal temperatures were measured. A number of thermocouples strategically situated within the metal itself, together with a knowledge of metal thermal conductivity and heat flux, enabled metal surface temperatures to be computed readily. This, however, required that the tube be both relatively short and thick-walled to accommodate the thermocouples. The use of copper, with its attendant relatively high thermal conductivity, compensated in part for this added thickness.

Four holes 1/8 inch in diameter were drilled, at 90° intervals, into each end of the tube to a depth of 47 inches. In each of these wells, two copper-constantan thermocouples were inserted, one 47 inches deep, the other $1\frac{1}{2}$ inches deep. In order to keep the junctions properly centered in the wells and to reduce the insulating effect of the holes, the longer thermocouple wires were inserted in short lengths of $\frac{1}{8}$ -inch by $\frac{1}{16}$ -inch copper tubing carefully fitted into the holes so that there was no side play. Space was provided for the shorter wires by

sawing off one side of the small copper tube down to the $l_2^{\frac{1}{2}}$ -inch depth. The holes were not centered in the copper tube (because of the threading of the ends) but the center lines are 0.205 and 0.135 inch from the outside and inside surfaces, respectively. Thus it was possible to know with certainty the exact location of the 16 junctions with respect to the coolant side of the metal wall and therefore the temperature distribution around the periphery of the tube as well as along its length.

Average inlet and outlet coolant temperatures were measured by thermocouples inserted in tees about 12 inches before and after the headers in the pipe lines entering and leaving the unit. It is believed that sufficient mixing occurred in the fluid streams at these points to insure a proper bulk temperature reading. Ordinary mercury-in-glass thermometers were used for control purposes. An automatic potentiometer was used to measure the temperatures to a precision of about 0.20 F.

The entire heat-exchange unit was so made that it could be dismantled easily and quickly for cleaning the copper and the glass surfaces or for replacing the gaskets and the glass tube in case of failure. During operation the unit was enclosed by a metal screen to provide protection for the glass tube. Essential dimensions of the apparatus and some convenient calculation constants are given as follows.

Inside diameter of copper tube, in	8
Outside diameter of copper tube, D1, in	56
Inside diameter of glass tube, D_2 , in	0
Equivalent diameter of annulus, De, ft)4
Cross-sectional area of annulus, S, sq ft 0.0067	7
Length of glass tube, in	2
Over-all length of copper tube, in 14.2	!5
Length of copper tube between flanges, in 12.62	25
Outside surface of copper tube between flanges, sq ft 0.45	7

Auxiliary Apparatus

The general arrangement of the apparatus and interconnecting piping is shown in figures 3 and 4. Liquid coolant was pumped from the large storage tank through a latinch rotameter into the heat-transfer unit. A centrifugal pump having a capacity of 20 gallons per minute at a pressure of 60 pounds per square inch and powered by a 3-horsepower motor was employed. Flow control was maintained by a bypass on the pump, a throttle valve, and a back-pressure valve. Rates of liquid flow were determined by intermittent weighing of the coolant, the rotameter being used solely for control purposes to insure that a constant flow rate was maintained during a run. The hot liquid leaving the heat exchanger was cooled before weighing or returning to storage in a heat exchanger by using water from the laboratory supply as coolant. The degree of cooling was

adjusted by means of a bypass around the cooler. A small vent condenser was provided to reduce vapor.loss at the storage and weigh tanks and to permit the escape of air from the system.

Steam at a gage pressure of 125 pounds was available so that metal-wall temperatures up to 325° F could be obtained. A steam-condensate reservoir and subcooler were provided as shown in figure 4. The reservoir was provided with a gage-glass so that the location of the steam-condensate interface could be observed at all times. A small amount of steam was allowed to escape at the vent valve so that any noncondensable gases were removed from the apparatus. Steam-condensate rates were determined by collecting a portion for weighing during a measured period of time, care being taken to adjust the interface exactly to the same level at the end of the period as at the beginning. The subcooler insured that none of the condensate flashed on being let down to atmospheric pressure.

An enlargement of the steam pipe line immediately ahead of the heat exchanger served as an entrainment separator. Any condensate in this main was trapped out through a bleed line and removed. It is believed that this arrangement provided saturated steam at all times for the unit, thus eliminating the need for determination of steam quality during a run. As a large amount of trouble was caused by dirt in the steam line that promoted dropwise condensation, a strainer was installed ahead of the reducing valve, and the entrainment separator ahead of the heat exchanger was replaced by a cyclone separator. Even so, it was necessary to flush out the steam side of the heat exchanger with acetone or methanol to remove oily dirt. The entire apparatus and all piping were thoroughly lagged to reduce heat losses to a minimum and such slight heat loss as did exist was determined.

For studying the effect of entrained air in the methanol, air was supplied by a compressor pump at a pressure which could be held approximately constant at any desired value less than 40 pounds per square inch. The air was metered by passing it through a finch rotameter which had been previously calibrated. From the rotameter, the air passed through a finch pipe and entered the coolant stream through a tee located about 2 feet ahead of the heat-exchanger unit. The temperature of the air in the rotameter was read by a thermocouple inserted in a tee immediately preceding the rotameter, while the pressure was read from a pressure gage inserted in the airline immediately following the rotameter. A needle valve placed in the airline just before the point of entry into the coolant stream permitted the flow of air to be closely regulated.

While runs without air were being made, the coclant circulating system was airtight, except for the brief interval of time required for determination of the mass flow rate. The inlet and outlet of the

weighing tank were surrounded by cloth rings which served to minimize the escape of coolant vapor into the air of the laboratory and also to prevent absorption of atmospheric moisture by the methanol.

TEST PROCEDURE

Water Runs

In the runs in which water was used as the coolant, the operation of the apparatus was relatively simple and straightforward. The pump was started and the water flow rate and back pressure on the heat-exchanger unit regulated to the desired value by means of the throttle valve, pump bypass valve, and back-pressure valve. Heating steam was turned on, the condensate reservoir vented to remove noncondensable gases, and a steady flow of cooling water put through the condensate cooler. The circulating coolant slowly rose in temperature to the desired inlet value, at which time cooling water to the auxiliary cooler was turned on and the flow rate adjusted.

Readings were then taken and recorded at 5-minute intervals of the temperatures of the coolant entering and leaving the heat-transfer unit, the coolant leaving the cooler, the coolant entering the storage and weighing system, and of the rotameter float position and the steam pressure. When all readings became constant and thermal equilibrium appeared to have been attained, the condensate rate was measured. The temperatures of the coolant entering and leaving the heat-transfer unit, of the steam, and of the copper tube (at the 16 points described in the section entitled "Heat Exchanger") were then taken and recorded. The condensate rate was again measured. If steady flow rates and thermal equilibrium had not prevailed during the course of the foregoing measurements, slight adjustments were made where necessary until a new equilibrium condition was obtained, at which time all measurements were repeated.

On completion of the foregoing operations, the coolant flow rate as indicated by the rotameter was checked by direct weighing. Steam flow and cooling water to the auxiliary cooler were turned off and the coolant stream diverted to the weigh tank where a given quantity (about 100 lb, the amount depending on the rate of flow) was accurately weighed and the time of efflux carefully determined with a stop watch. During this period the temperature of the coolant at the rotameter was found to remain essentially constant and equal to its temperature during the course of the actual run. The rotameter float position was also carefully observed and any minor deviations from previous settings corrected. Barometric pressure and room temperature were also noted and recorded.

After an early series of runs had shown that water acted to cause an oxide and dirt film on the copper surface, a series of tests was made to determine the effect of the addition of small amounts of some inhibitor to the water. Experiment showed that the addition of about 0.1 percent by weight of disodium acid phosphate retarded the formation of rust in the piping system and reduced the rate of deposition of dirt on the copper tube. Experiment also showed that distilled water was superior in this respect to the water from the laboratory supply. As a result of these tests, distilled water with the addition of 0.1 percent of disodium acid phosphate was employed.

In order to evaluate the effect of the dirt film, a series of runs was made periodically under as nearly exact conditions of operation as possible. By assuming a "fouling factor" of zero for any run made with the copper tube newly cleaned, fouling factors could be calculated by subtracting from the liquid-film resistance for each of these runs that for the newly cleaned tube. All the "standard" runs were made at inlet coolant temperatures around 117° F, heat loads of about 60,000 Btu per hour, and coolant rates of about 16 gallons per minute.

Methanol Runs

The test procedure for runs without entrained air and employing methanol as coolant was identical with the test procedure used for runs with water as coolant. It was found that, in general, equilibrium conditions were attained more rapidly with methanol as coolant than they had been attained when water was used as the cooling medium. This is a natural result in view of the lower heat capacity of methanol.

In order to check on the possible formation of a dirt film on the coolant side of the copper tube, a standard run was repeated at regular intervals. In contrast with the effects observed with water, it was found that the heat-transfer coefficient remained essentially constant, this fact indicating a negligible formation of dirt film.

As has already been mentioned, the deposition of oily dirt on the steam side of the heat exchanger sometimes caused dropwise condensation of the steam in the form of drops. This condition was easily detected by means of the resulting high tube—wall temperatures and nonuniform temperature distributions. Consequently, at the start of each day's series of runs, conditions for a standard run were duplicated. Equilibrium was attained in about \(\frac{1}{2} \) hour, and the tube—wall temperatures were then quickly read and compared with the known values for a clean tube. If they checked, work on the other runs could proceed with confidence; if they did not check, the rig was shut down and remedial measures taken. Usually a simple flushing with an organic solvent was sufficient, but it was occasionally necessary to dismantle the heat exchanger and give the copper tube a thorough cleaning with scouring powder.

Methanol Runs with Entrained Air

The effect of entrained air on the heat-transfer properties of the coolant was studied in the following manner. A run was first made without air, equilibrium being reached and a complete set of readings taken. On keeping all other valve settings fixed, the air valve was then opened and a small amount of air allowed to enter the coolant stream. When a new equilibrium had been reached, a second complete set of readings was taken, including determination of the coolant mass flow rate. This was then repeated once or twice more for higher air-flow rates. In this way, a set of three or four runs was made in which coolant flow conditions remained essentially constant except for varying amounts of entrained air. A total of 6 such sets of runs (including 22 separate runs) was made, 3 boiling and 3 nonboiling, at high, intermediate, and low coolant flow rates. The runs of each set were assigned the same serial number, with letters following to indicate the amount of air.

Determination of Heat Loss to Surroundings

Despite the thorough lagging of all steam and condensate lines, small heat losses to the room undoubtedly occurred. A series of blank runs was therefore made with no flow of coolant through the unit at a number of steam pressures from 28 to 110 pounds per square inch. The rate of flow of condensate was carefully measured over periods of about 30 minutes and heat losses calculated. These results were plotted as heat loss in Btu per hour against the difference between steam and room temperatures.

METHOD OF CALCULATION

The method of calculation employed can best be followed by reference to tables I, II, and III, wherein observed and calculated data are given in detail. If a series of readings was taken over a period of time, as when temperatures were read at 5-minute intervals during steady-state conditions, average values are given.

Heat-Transfer Calculations

Heat-transfer rates and heat balances were computed in a normal manner. All data for steam were taken from the tables of Keenan and Keyes (reference 3). In the runs with water, the heat gained by the coolant was simply calculated from the flow rate and temperature rise as follows:

$$q_c = W_c C \left(t_{co} - t_{ci} \right)$$
 (1)

The use of methanol as a coolant necessitated a change in the calculation procedure since the specific heat of methanol varies considerably with temperature (in contrast with the specific heat of water, which differs from unity by less than 0.7 percent over the entire temperature range from 40° F to 212° F). The heat gained by the methanol was accordingly calculated from the difference in heat content of the coolant at the inlet and outlet temperatures as follows:

$$q_c = W_c \left(H_{co} - H_{ci}\right) \tag{2}$$

The heat from the steam $q_{\rm sc}$ is taken as the product of the condensate rate and latent heat of vaporization less heat loss to the surroundings as follows:

$$q_{sc} = W_s h_{fg} - q_L$$
 (3)

Because steam was in contact with condensate below the unit, the condensate could be expected to leave the reservoir at the boiling point. Since the steam entering the unit was generally dry and saturated, only latent heat need be considered. The small heat loss $\mathbf{q}_{\underline{\mathbf{I}}}$ was obtained from data obtained on the blank runs.

The boiling point of the coolant in the annulus of the exchanger is based on readings of the pressure gage located just upstream of the unit. The pressure drop across the annulus was generally measured with a water manometer; this drop was usually small compared with the actual static pressure on the coolant, and no refinement of the boiling temperature because of pressure drop was made.

In order to calculate the heat-transfer coefficient from metal surface to coolant, it is necessary to know the average coolant and the average surface temperatures. Because of the small temperature difference, the arithmetic average of inlet and outlet coolant temperatures is satisfactory for the former. The average of the 16 temperatures at the elevations and the angular positions of the metal wall was found to give an excellent approximation of the average temperatures of the metal at a depth of 0.205 inch from the coolant surface, as can be seen by the examples shown by figures 5 and 6. The average temperature difference across this thickness of metal was calculated from the value of heat flux and the conductance of the metal, which latter value is around 11,000 Btu/(hr)(sq ft)(°F).

In order to take care of end effects, values of the liquid-film coefficient $h_{\rm C}$ are based on a corrected outside surface area of the copper tube. The metal heads conducted a small portion of heat to the

coolant, and it was convenient to correct for this effect by increasing the value of the heat-transfer surface on which the coefficients are based. The calculation of the effective increase in area is shown in appendix A by considering the two heads as fins; this increase amounts to 4.6 percent in the case of water and 9.6 percent in the case of methanol.

When a dirt film was known to have built up on the tube surface over a period of time, the resistance of and the temperature drop across this film were evaluated and a suitable correction applied. The method of determining this resistance by repeating periodically a so-called standard run was previously described. A plot of dirt-film resistance against run number gave curves from which this value could be obtained. Furthermore, coefficients computed for runs subsequently made from time to time on the newly cleaned tube agreed very well, thus indicating the validity of this method of approach. Values of the dirt-film resistance $1/h_d$ used in the calculations are given as item 16 in tables I, II, and III. Sources of data used for the physical properties of methanol are given in appendix B; a brief summary of the data is given in table IV.

Air-Flow Calculations

The rotameter used for the metering of air was first calibrated in the following manner. Known quantities of air from a calibrated gas-holder were allowed to pass through the rotameter for several different readings of the rotameter, and the times of efflux were recorded. Atmospheric pressure, air temperature, and pressure drop across the rotameter were also recorded. From these data, air densities and volumetric flow rates corresponding to the various readings of the rotameter were computed. The calibration curve was drawn by plotting as abscissa the rotameter readings and as ordinate the product of the actual flow rate in cubic feet per hour and the dimensionless ratio $(\rho/\rho_0)^{1/2}$, where ρ represents actual air density and po represents air density at some fixed conditions of temperature and pressure. This method of plotting gives a single curve which is valid over a large range of air density. The actual value of ρ_0 used is clearly immaterial, and for convenience the value 0.075 pound per cubic foot, corresponding to air at 200 C and 1 atmosphere pressure, was used.

In the calculations involving air data, the density of air passing through the rotameter was calculated from its observed temperature and pressure, and its volumetric flow rate was then computed from the rotameter calibration curve. Values of $\left(\rho/\rho_{o}\right)^{1/2}$ varied from 1.40 to 1.74 during actual runs, whereas the value of this ratio during calibration was 0.985. From the knowledge of the density and volumetric flow rate of the air through the rotameter, its mass flow rate was calculated.

The volume of air passing through the heat exchanger was computed from knowledge of the pressure and average temperature of the coolant. Since the bubbles of entrained air were presumably saturated with methanol vapor by the time they reached the heat exchanger, the volume of air was corrected for the effect of the vapor pressure of methanol.

Method of Correlation

In order that the heat-transfer coefficient $\,h_{\rm C}\,$ can be correlated with fluid properties and flow conditions and also be compared with data of other investigations, the results were computed as j-factors according to the equation

$$J = \left(\frac{h_c}{CG}\right) \left(\frac{C\mu_a}{k}\right)^{2/3} \left(\frac{\mu_w}{\mu_a}\right)^{0.14} \tag{4}$$

and the Reynolds number

$$N_{Re} = \frac{D_e G}{\mu_R} \tag{5}$$

Equation (4) is essentially that used by Colburn (reference 4) for correlating heat-transfer data for fluids in round pipes but includes the power function of the viscosity ratio recommended by Sieder and Tate (reference 5) to correct for the fluid-film viscosity. The Reynolds number is based on the equivalent diameter of the annulus $(D_2 - D_1)$ and in this form possesses the advantage of permitting a more direct comparison of the data obtained for an annulus with the recommended heat-transfer relations for fluids in round pipes. Furthermore, Carpenter, Colburn, Schoenborn, and Wurster (reference 6) have shown that this is the proper Reynolds number to use in the case of flow through annular spaces. This method of treatment is convenient also in utilizing fluid properties evaluated at the average coolant temperature $t_{\rm ca}$.

For purposes of further treatment of the data and in particular to establish the effect of vaporization of the coolant at the tube surface, it was necessary to know the boiling point of the coolant under existing conditions of operation and the average as well as the maximum temperature at the coolant-metal interface. The latter values were computed by subtracting the sum of the temperature drops across

the tube wall and dirt film from the average tube-wall temperature $t_{\rm w}$ and are given in tables I, II, and III as items 21, 18, and 19, respectively.

DISCUSSION

Heat Balance

Values of the heat load based on the coolant stream and on the steam condensate rate generally agreed very well. Deviations in the heat balances are shown in tables I, II, and III (item 11) for each run. As can be seen, deviations are within 3 percent for about 60 percent of all runs and within 5 percent for 85 percent of all runs. Despite the occasional larger deviations, which doubtless result from the small coolant temperature rise encountered at high coolant rates, the good agreement normally obtained serves to emphasize the reliability of the data secured on this type of rig.

Tube-Wall Temperature Distribution

The type of temperature distribution obtained from the 16 tube-wall thermocouples is represented by using polar coordinates in figures 5 and 6. The data shown are for run 59 (water) and run 93 (methanol) and demonstrate the remarkable symmetry that can be obtained. Similar data for all runs are given in tables I, II, and III, wherein the letters A to D refer to locations vertically from bottom to top and the numbers 1 to 4 to the angular position around the tube.

The temperature distributions for some of the early runs did not show as excellent symmetry as the ones illustrated. This was found, after extensive tests had been made, to be due to dropwise condensation of the steam in the form of drops at certain points on the inner tube wall. Initially, a large number of runs was made with lauryl thiocyanate used as a promoter of dropwise condensation so as to obtain high coefficients on the steam side, but nonuniform condensation resulted in such erratic patterns that its use was discontinued. By keeping the inner tube surface and interconnecting piping scrupulously clean and free from oil films, uniform film—type condensation was secured with resulting uniform and reproducible tube—wall temperature distributions. It is believed that film—wise condensation of steam existed during all runs reported herein.

In figure 7 average temperatures at a given cross section of the tube are plotted as functions of tube length. Terminal temperatures are shown also for both the coolant (water) and steam, the dashed lines indicating the trend between end points. The small temperature rise of the coolant compared with the temperature difference between wall and coolant justifies

the procedure of determining the mean temperature difference by subtracting the average (of inlet and outlet) coolant temperature from the average wall temperature (based on the 16 thermocouple readings and the temperature drop through the metal).

It should be noted that the decreasing wall temperature from top to bottom is a result of both the increasing thickness of the steam-condensate film and the increase in the coolant-film coefficient. Since the coolant flowed upward in the tube, the coefficient at the bottom would be greater than the average value because of turbulence and the fact that the velocity distribution had not been established. However the latter effect is relatively small compared with the change in the steam-film resistance. Thus the variable temperature drop from metal to coolant is a measure of the variable heat flux, which, as in an engine, is greatest at the top and progressively decreases down the cylinder. For example, in run 59 for which the temperatures are given in figure 7, with an average heat flux of 60,900 Btu/(hr)(sq ft), the heat flux at the upper end of the tube is estimated as 98,000 Btu/(hr)(sq ft) and at the lower end, 33,000 Btu/(hr)(sq ft). These values are quite representative of full power conditions of some reciprocating engines.

In figure 8 the distribution of temperature with tube length is shown for low and high coolant (methanol) flow rates, both with and without local boiling and/or air entrainment. It is seen that the temperature distributions are roughly linear for high coolant velocities but deviate quite considerably from linearity for low coolant velocities. This is probably due to the effect of free convection. At low flow rates, the increased mixing of coolant due to convection near the top (outlet) of the tube causes a more complete equalization of coolant temperatures with the result that the top of the tube may be cooler than the part immediately below.

Nonboiling Data

Inasmuch as the apparatus was designed to give uniform flow of coolant so as to permit exact comparison of the results with extensive heat-transfer data from the literature for flow in pipes and in annular spaces, the data have been correlated by a method permitting such a comparison. It was expected that, if the data were reliable, the runs in which no local boiling occurred would show good agreement with the literature. In figure 9 the nonboiling data, for both water and methanol, are shown. In case of laminar flow through annuli, the use of the following equation is recommended in reference 6:

$$\left(\frac{h_c}{c_0}\right) \left(\frac{c_{\mu_a}}{k}\right)^{2/3} \left(\frac{\mu_w}{\mu_a}\right)^{0.14} = 1.86 \left(\frac{b_e G}{\mu_a}\right)^{-2/3} \left(\frac{L}{b_1 + b_2}\right)^{-1/3}$$
 (6)

It is seen that the data are somewhat low compared with equation (6) but this may possibly be due to the effects of free convection. The data of Jurgenson and Montillon (reference 7) indicate that free convection forces decrease the heat-transfer coefficient for upward flow.

For turbulent flow in pipes the Seider and Tate equation (reference 5) is (as given by McAdams (reference 8)):

while for turbulent flow in annuli Davis (reference 9) recommends

$$\left(\frac{h_c D_1}{k}\right) = 0.031 \left(\frac{D_1 G}{\mu_a}\right)^{0.8} \left(\frac{C\mu_a}{k}\right)^{1/3} \left(\frac{\mu_a}{\mu_w}\right)^{0.14} \left(\frac{D_2}{D_1}\right)^{0.15}$$
(8)

It is an interesting coincidence that for the geometry involved in the present apparatus, the Davis equation reduces to

$$\left(\frac{h_c}{cg}\right)\left(\frac{c\mu_a}{k}\right)^{2/3}\left(\frac{\mu_w}{\mu_a}\right)^{0.14} = 0.023\left(\frac{D_e G}{\mu_a}\right)^{-0.2} \tag{9}$$

which is equivalent to the Colburn equation (reference 4) with the Seider and Tate viscosity ratio modification (reference 5). Figure 9 shows that the data fall between equations (7) and (9). It may be noted that figure 9 is analogous to figure 13 given by Bernardo and Eian (reference 10) which provides heat-transfer data for various nonboiling coolants inside a heated tube; actually the data from the two studies would practically coincide, thus lending support to the general relation for nonboiling coolants.

It may be noted that the methanol data of the present investigation in the turbulent region fall somewhat higher than the water data. The fact that this discrepancy occurs in the turbulent and not in the laminar region is difficult to understand.

The discrepancy between the correlations of water and methanol data at high coolant velocities is a matter of relatively minor importance and in no way affects the validity of the main results of this investigation, namely, the effects of local boiling and entrained air on heat-transfer properties of liquid coolants in annular spaces. It would be expected that both local boiling and the presence of entrained air would increase the rate of heat transfer because of the slightly increased volocity (for a given coolant flow rate) and increased turbulence. The separate effects of local boiling and entrained air are discussed in the following paragraphs.

Local Boiling without Air

When the metal surface exceeded the boiling point of the coolant at the existing pressure, even though the bulk temperature of the coolant was considerably below the boiling point, formation of vapor bubbles at the metal surface could be observed. The boiling phenomena were clearly evident, particularly after the tube had been freshly cleaned, and a brief description is of general interest. Small bubbles of vapor were seen to form and cling to the tube wall - then gradually to be torn away to become dissipated in the bulk of the flowing coolant stream (where the temperature was still below the boiling point). On increasing the pressure on the coolant, bubble formation stopped and the bubbles remaining were torn away.

When a dirt film had formed on the tube wall and as fouling conditions increased, it was not possible to observe the metal-liquid interface clearly. Vapor bubbles did not appear to form on the metal surface, however, nor to cling to the wall but were quite visible in the liquid stream. As coolant pressure was increased, rate of bubble formation decreased and finally ceased altogether.

In some runs active boiling was evident only at the upper portion of the tube, so for this reason maximum values of t11 were computed for the top portion of the tube and are given in tables I, II, and III. By adjustment of the pressure on the coolant, a rather sharp line of demarcation between boiling and nonboiling areas could be made to move up or down the tube at will. Some nonuniform temperature patterns obtained are doubtless due to such phenomena. If the temperature excess of the metal wall over the boiling point of the liquid was small (less than 10° F), only a few bubbles of vapor were formed, and these disappeared almost the instant they were torn loose from the wall. As the temperature excess was increased, the rate of bubble formation increased and the bubbles showed less tendency to disappear. The general appearance of the tube while local boiling was taking place was the same for both water and methanol. In this connection the problem arises as to the parameter that is best to use to denote the degree of local boiling. As previously noted (see fig. 8) the wall-surface temperature increases from bottom to top of the tube so that local boiling may occur at the top of the tube even though the average wall temperature is below the boiling temperature of the coolant. Thus the use of the parameter (tli - tbp) might involve

the use of negative values, cognizance being taken of the fact that local boiling could occur at negative values. On the other hand, the use of $t_{li_{max}} - t_{bp}$ would not be a proper measure of average conditions. The most exact method would involve plotting the temperature distribution along the length of the tube and graphically determining the mean excess above the boiling point of the coolant. For the purposes of this report the quantity $t_{li} - t_{bp}$ will be used as an approximation since it allows much simpler and more direct calculation. However it should be recognized that negative values do not necessarily mean that boiling is not occurring. The condition for local boiling is that $t_{li_{max}}$ be greater than t_{bp} .

The fact that this local boiling phenomenon increases the heat-transfer rate markedly under certain conditions can be seen from the boiling data in figure 10. It will be seen that these are higher the greater the temperature excess and the lower the Reynolds number. The effect of the excess of surface temperature over the coolant boiling point in increasing heat-transfer rate is approximately the same for both coolants, water and methanol, as can be seen from the values of $(t_{li} - t_{bp})$ shown adjoining the experimental points. It would be expected that this effect would be about the same for any pure coolant, although possibly not for mixtures. In case of mixtures the evaporation of a portion of the liquid would increase the boiling point of the remaining liquid; this might therefore reduce the effect.

In figure 11 the heat-transfer coefficient of water is plotted against the linear coolant velocity V. Lines of approximately constant temperature differences $(t_{li} - t_{bp})$ of 0, 10, 20, and 30° F are indicated as parameters. An important conclusion is that with low boiling coolants the heat-transfer rate does not fall off with decreasing velocity in the engine jacket to anything like the decrease for high boiling coolants.

Figure 12 shows the variation of heat-transfer coefficient of methanol with linear velocity of flow for various values of the average temperature excess. In both figures 11 and 12, the curve for nonboiling data, to the right of V = 1 foot per second, has been drawn as a straight line of slope 0.8 in accordance with usual heat-transfer data in turbulent flow, and agreement is seen to be excellent. The methanol data are somewhat more complete than the water data and bring out several interesting points not discernible from the latter. As in the case of water, the heat-transfer coefficient is seen to increase as the average temperature excess (tli - tbp) increases, though the relative increase decreases as the velocity of flow increases. Thus, for example, a temperature excess of 10° F increases the heat-transfer coefficient by 47 percent above the nonboiling value for a flow velocity of 0.5 foot per second, though a temperature excess of over 30° F is required to produce the same increase at the higher flow velocity of 3 feet per second.

The method of plotting used in figures 11 and 12 is useful only in determining the effect of velocity on the rate of heat transfer for one fluid at a given temperature. Different fluids or even the same fluid at different temperatures cannot be compared since the physical properties as well as the velocity influence the rate of heat transfer. Figure 13, in which the j-factor is plotted against the average temperature excess with Reynolds number as parameter, allows comparison of the methanol and the water data. Scattering of some of the data in this and the preceding figures is probably due to nonuniformity in local boiling from top to bottom of the tube. Occasionally, bubbles of vapor were observed at only a portion of the tube surface. It appears that a sufficiently high temperature excess produces some effect even at high flow rates. Higher temperature excesses were obtained in using the lowerboiling methanol as coolant, and it can be seen that the effect of increasing the Reynolds number is simply to increase the threshold value of the temperature excess required to produce a significant increase in the heat-transfer coefficient. It will be noted that the threshold value of the average temperature excess is lower for water than for methanol. The reason for this cannot be stated definitely because of the little that is known of boiling heat transfer. It is known that the properties of the liquid and the type of surface influence the rate of boiling. It may be noted that the critical value of At (i.e., the value of Δt at which the maximum heat flux occurs and above which the flux begins to decrease because of formation of a film of vapor over the heating surface) for water boiling at a copper wall is considerably lower (see reference 8) than that of methanol. This indicates the more facile formation of vapor bubbles in the case of water and hence explains the lower threshold values obtained herein.

Figure 13 may be compared with figure 170 given by McAdams (reference 8). In the latter figure, $j(N_{\rm Re})^{0.2}$ is plotted against the temperature excess for heat transfer in the tubes of a forced-circulation evaporator in which both warming and actual vaporization took place. Instead of the rough differentiation of McAdams between Reynolds numbers above and below 65,000, it appears that a separate curve for each Reynolds number is obtained even if the curves are brought together at low values of the temperature excess by multiplying the j-factor by $(N_{\rm Re})^{0.2}$.

Entrained Air without Local Boiling

When air was introduced into the coolant stream, the air was broken up into bubbles and more or less evenly distributed throughout the stream. The size of the bubbles and the evenness of the distribution depended on the velocity of coolant flow. Thus, for a Reynolds number of about 20,000, the bubbles of air were small (about 0.5 mm in diam.) and evenly distributed. A Reynolds number of 10,000 produced bubbles of slightly larger size, though their distribution was still very

uniform. When the Reynolds number was decreased to 4000, however, the flow velocity was insufficient to break up the air stream into small bubbles; the size of the bubbles simply increased as the rate of air flow was increased until they had a volume about one-third the volume of the entire annular space. The distribution of these large bubbles, while irregular at any given instant of time, nevertheless was fairly uniform when averaged over longer intervals of time.

21

The action of the entrained air in increasing the heat-transfer coefficient appears to be due to a combination of two related factors:
(1) increased turbulence, and (2) increased linear velocity of the coolant for a given rate of coolant mass flow. The increased linear velocity is due to the fact that the entrained air decreases the average density of coolant-air mixture, and hence, for a given mass flow rate, the linear flow rate must increase. Since both the increase in turbulence and the increase in linear flow rate are primarily governed by the relative volume rather than the mass of the entrained air, the data have been correlated on the basis of the percentage by volume of air (plus methanol vapor) in the heat exchanger.

As can be seen from figure 14, the effect of entrained air is qualitatively similar to the effect of local boiling. The increase in the heat-transfer coefficient is greater for low coolant velocities and increases with increasing amounts of air. The velocity of flow used in figure 14 is not the actual linear flow rate but rather the flow rate that would exist if there were no air and is obtained by dividing the coolant mass flow rate by the density of the coolant. In this way the graph shows the over-all effect of the entrained air on the heat-transfer coefficient; if the actual velocity of the mixture were plotted, only the effect of increased turbulence would show up on the plot, and the effect of the increased velocity would not be apparent.

Entrained Air with Local Boiling

When local boiling was taking place, the effect of entrained air was to increase the heat-transfer coefficient still further, although the amount of this additional increase was considerably less than that caused by air alone without boiling. This can be seen by a comparison of figures 14 and 15. In a sense, then, the effects of air and boiling are complementary, that is, the effects of boiling become less as the amount of air increases, while the effect of air becomes less as the amount of boiling increases. Both effects become less as the Reynolds number increases.

The effect of air on boiling runs is shown in figure 15, where heattransfer coefficients and average temperature excesses are plotted as functions of the percentage of air for various values of the Reynolds number. It is seen that increasing the amount of entrained air tends to cool the metal wall and thus lower the average temperature excess, while at the same time the heat-transfer coefficient is increased. Since a decrease in the average temperature excess would, by itself, tend to lower the heat-transfer coefficient, it follows that the effect of the air in raising the heat-transfer coefficient is sufficient to outweigh the effect of lowered temperature excess.

Application to Engine Cooling

Since the important feature in engine work is the wall temperature rather than heat-transfer rates in themselves, the results of this investigation have been used to calculate typical values of metal temperatures with and without local boiling. Figures 16 and 17 have been prepared for the two values of heat flux of 100,000 and 50,000 Btu/(hr)(sq ft), which are representative of average rates through the head and the barrel, respectively, of aircraft engines under full power. The coolant (water) is assumed to be at 190° F and the curves show the metal temperature as a function of coolant velocity. If the boiling point of the coolant is above the metal temperature, the latter becomes excessive at low coolant velocities, but if the boiling point of the coolant is as much as 30° F below the metal temperature, the metal temperature stays reasonably low even at low coolant velocities.

Figure 18 has been prepared, analogous to figures 16 and 17, to show the cooling effect of the local boiling of methanol. By assuming a heat flux of 50,000 Btu/(hr)(sq ft) and an average coolant temperature of 110°, F, average wall temperatures have been calculated on the basis of figure 12. The results are comparable with those obtained for water, when allowance is made for the fact that methanol has a generally lower heat-transfer coefficient. Because of the generally low heat-transfer rates to organic liquid in forced convection, it is to be expected that other organic coolants would also exhibit large local-boiling effects.

A set of curves could likewise be drawn to show the effect of entrained air on the metal-wall temperature. It can be seen from figure 14, for instance, that a 15-percent volume of entrained air will have roughly the same effect on the heat-transfer coefficient as an average temperature excess of 30° F, and a combination of air and boiling could be expected to show a somewhat greater effect than the same amount of either air or boiling separately.

SUMMARY OF RESULTS

An investigation has been made of the effect of local boiling and air entrainment on temperatures of liquid-cooled cylinders. Results are shown as coolant-film coefficients of heat transfer; these are correlated as dimensionless parameters (j-factors) as a function of Reynolds number. At low metal-wall temperatures, that is, when the wall-

coolant interface temperature is below the boiling point of the coolant under existing pressures, data are in close agreement with the well-known equations for heat transfer in round pipes and in annular spaces. At high metal-wall temperatures, that is, when the interface temperature is above the coolant boiling point, local-boiling effects can be observed. Heat-transfer rates under the latter conditions are found to depend primarily upon the temperature excess of the wall over the liquid boiling point and upon the velocity of the coolant past the heating surface. It is shown that, particularly at low liquid velocities, the heat-transfer coefficient increases with increasing values of this temperature difference, with a maximum increase found of 300 percent. The effect of entrained air is also shown to increase heat-transfer coefficients, especially at low liquid velocities, with a maximum increase found of 100 percent. The effect of coolant pressure is merely to increase the boiling point and so decrease the temperature excess.

The results of this study have been extended to show the typical effect of the local-boiling phenomenon on metal-wall temperatures. At low coolant velocities excessive metal temperatures would normally prevail, but with low-boiling coolants these temperatures are drastically reduced. The effect is even more spectacular for methanol than for water, owing to the poorer heat-transfer qualtities when nonboiling. For the conditions chosen, with a methanol coolant velocity of 1 foot per second, the metal-wall temperature would run 400° F if the coolant boiling point was higher than the surface temperature; if the coolant boiling point was, say, 40° F below the surface temperature, the metal temperature would be only 220° F.

University of Delaware Newark, Del., August 14, 1947

APPENDIX A

HEAT-TRANSFER CORRECTION FOR STEEL HEADS

Consideration of the heat-exchange unit shows that, although the bulk of the heat transfer to the coolant is effected through the copper tube, a portion of the total heat load is transferred by conduction through the steel heads. This additional transfer of heat is most conveniently accounted for by an estimation of the extra effective surface area contributed by each head. By assuming the heads to behave as parallel-sided circumferential fins, it is possible to calculate a suitable fin efficiency from which the increase in surface area can be evaluated. For this case the following dimensions are employed:

The fin effectiveness for straight fins, as given by Bierman and Pinkel (reference 11), may be written:

$$\eta = \frac{\tanh a w'}{a w'}$$

where

 $a = (h/kt)^{1/2}$ for one side of fin

h surface film coefficient

k thermal conductivity

<u>Water</u>. On assuming a heat-transfer coefficient h = 1500 and a thermal conductivity k = 26 (for steel),

$$a = \left(\frac{1500}{26 \times 0.0572}\right)^{1/2} = 31.75$$

The fin effectiveness then becomes (for straight fins)

$$\eta = \frac{\tanh (31.75)(0.1157)}{31.75 \times 0.1157} = 0.272$$

For a circular fin this value is corrected by using figure 12 given by Harper and Brown (reference 12). For a value of $R_b/(R_b + w) = 0.375$, a correction (f' = -0.1, approximately) is found. The corrected fin effectiveness thus becomes

$$\eta_{cor} = 0.172$$

The extra effective surface = $0.172 \times 0.1232 = 0.0212$ square foot, or an increase in surface of $\frac{0.0212}{0.457} \times 100 = 4.6$ percent. The total corrected effective heat-transfer surface is, then, 0.478 square foot, equivalent to an effective tube length of 13.2 inches.

<u>Methanol</u>. - On assuming an average heat-transfer coefficient h = 500 and proceeding as before,

$$\eta = 0.458$$

$$\eta_{cor} = 0.358$$

The extra effective surface = $0.358 \times 0.1232 = 0.0441$ square foot, or an increase in surface of $\frac{0.0441}{0.457} \times 100 = 9.6$ percent. The total corrected effective heat-transfer surface is 0.501 square foot, equivalent to an effective tube length of 13.8 inches.

APPENDIX B

SOURCES OF PHYSICAL PROPERTIES OF METHANOL

Data on the heat content of liquid methanol were obtained from reference 13. The following formula was given:

$$H' = 23.529(\theta/10)^2 + 0.010036(\theta/10)^3$$
 (B1)

where H' is the heat content or enthalpy of the saturated liquid above 0° C expressed in joules per gram and θ is the temperature in ${}^{\circ}$ C. Within the temperature range for θ from 40° C to 110° C, this formula agrees with the observed values to within 0.05 joule per gram. If H is expressed in Btu per pound, the formula becomes

$$H = 10.1175(\theta/10) + 0.11107(\theta/10)^{2} + 0.0043155(\theta/10)^{2}$$
(B2)

If equation (B2) is differentiated and multiplied by 5/9 to convert Btu/(1b)(°C) to Btu/(1b)(°F), the following equation is obtained:

$$C = 0.56208 + 0.01234(\theta/10) + 0.0007192(\theta)$$
(B3)

where C is in Btu/(1b)(°F) but & is still in °C.

An extended graph of equation (B2) permits differences in heat content to be read with sufficient accuracy for temperature rises greater than about 3° C or 5° F. For smaller temperature rises, better accuracy is obtained by using equation (B3) to compute the specific heat at the mean temperature and multiplying this by the temperature rise to obtain the increase in heat content.

Data on thermal conductivity of liquid methanol were obtained from reference l4. Variation of conductivity with temperature was found to be linear over the range 10° C to 50° C and is given by the equation k' = 0.00054 - 0.0000150t, where t is in °C and k' is in calories/(sec)(cm)(°C). If k is expressed in Btu/(hr)(ft)(°F) and t in °C, the following equation results:

(B4)

Data on viscosity were obtained chiefly from reference 15. The logarithm of the viscosity was plotted against the reciprocal of the absolute temperature on rectangular paper, and the points were seen to fall along a smooth curve, the greatest variation being less than 2 percent. A smooth curve was therefore drawn through these points and viscosities obtained, at intervals of 5°C, from 0°C to 80°C. Second

By using the calculated values of the viscosity μ and the values of C and k as given by equations (B3) and (B4), the Prandtl group was calculated from the definition $N_{Pr} = C\mu/k$ and a plot made

differences were found to vary but slowly with temperature, so it was possible to extrapolate, with reasonable certainty, up to 1000 C.

of $(N_{\rm Pr})^{-2/3}$ as a function of temperature. Vapor-pressure data were taken from references 16 and 17, interpolation being performed by plotting logarithm of pressure against reciprocals of absolute temperatures. Data on density were taken from the International Critical Tables (reference 15). Variation with temperature was found to be very nearly linear in the temperature range 0°C to 90°C. A summary of the pertinent data for liquid methanol is given in table IV.

REFERENCES

- 1. McAdams, W. H., Woods, W. K., and Bryan, R. L.: Vaporization inside Horizontal Tubes. Trans. A.S.M.E., vol. 63, no. 6, Aug. 1941, pp. 545-552.
- 2. McAdams, W. H., Woods, W. K., and Heroman, L. C., Jr.: Vaporization inside Horizontal Tubes II. Benzene-Oil Mixtures. Trans. A.S.M.E., vol. 64, no. 3, April 1942, pp. 193-200.
- 3. Keenan, Joseph H., and Keyes, Frederick G.: Thermodynamic Properties of Steam. John Wiley & Sons, Inc., 1936.
- 4. Colburn, Allan P.: A Method of Correlating Forced Convection Heat Transfer Data and a Comparison with Fluid Friction. Trans. Am. Inst. Chem. Eng., vol. 29, 1933, pp. 174-211.
- 5. Sieder, E. N., and Tate, G. E.: Heat Transfer and Pressure Drop of Liquids in Tubes. Ind. and Eng. Chem., vol. 28, no. 12, Dec. 1936, pp. 1429-1436.
- 6. Carpenter, F. G., Colburn, A. P., Schoenborn, E. M., and Wurster, A. W.:
 Heat Transfer and Friction of Water in Annular Space. Trans. Am.
 Inst. Chem. Eng., vol. 42, no. 2, April 25, 1946, pp. 165-187.
- 7. Jurgensen, D. F., Jr., and Montillon, G. H.: Heat Transfer Coefficients on Inclined Tubes. Ind. and Eng. Chem, vol. 27, no. 12, Dec. 1935, pp. 1466-1475.
- 8. McAdams, William H.: Heat Transmission. Second ed., McGraw-Hill Book Co., Inc., 1942.
- 9. Davis, Elmer S.: Heat Transfer and Pressure Drop in Annuli. A.S.M.E., vol. 65, no. 7, Oct. 1943, pp. 755-759.
- 10. Bernardo, Everett, and Eian, Carroll S.: Heat-Transfer Tests of Aqueous Ethylene Clycol Solutions in an Electrically Heated Tube. NACA ARR No. E5F07, 1945.
- 11. Biermann, Arnold E., and Pinkel, Benjamin: Heat Transfer from Finned Metal Cylinders in an Air Stream. NACA Rep. No. 488, 1934.
- 12. Harper, D. R., 3d, and Brown, W. B.: Mathematical Equations for Heat Conduction in the Fins of Air-Cooled Engines. NACA Rep. No. 158, 1922.
- 13. Flock, E. F., Ginnings, D. C., and Holton, W. B.: Calorimetric Determinations of Thermal Properties of Methyl Alcohol, Ethyl Alcohol, and Benzene. Res. Paper 312, Nat. Bur. of Standards Jour. Res., vol. 6, no. 5, May 1931, pp. 881-900.

- 14. Bates, O. K., Hazzard, G., and Palmer, G.: Thermal Conductivity of Liquids. Ind. and Eng. Chem. (Anal. Ed.), vol. 10, no. 6, June 1938, pp. 314-318.
- 15. Washburn, Edward W., ed.: International Critical Tables. First ed., McGraw-Hill Book Co., Inc., vol. V, 1929, p. 11.
- 16. Lange, N. A.: Handbook of Chemistry. Handbook Publishers, Inc. (Sandusky, Ohio), 1941, pp. 1251-1252.
- 17. Perry, John H., ed.: Chemical Engineers Handbook. Second ed., McGraw-Hill Book Co. Inc., 1941, p. 381.

TABLE I .- SUMMARY OF WATER DATA AND RESULTS

	The state of the s		-		1	T
Item	Run	28	29	30	33	34
1 2 3 4 5 6 7 8 9 10	Wc tci tco qc Ws P ts hfg qL qsc Deviation in heat balance	8,020 116.8 120.3 28,050 32.3 34.5 258.4 938.6 730 29,620	8,210 116.8 120.4 29,550 32.7 34.3 258.1 938.5 720 29,930	774 181.9 212.9 24,100 30.9 105.9 332.0 884.3 1,275 26,075	768 183.0 214.6 24,400 27.6 105.6 331.8 884.5 1,320 23,080	8,180 116.2 120.0 31,000 32.5 34.3 258.0 938.5 660 29,840
	$(q_{sc} - q_c)(100)/q_{sc}$, percent	5 ·3	1.3	7.6	-5・7	-3-9
13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qav/Ao Atw 1/hd Atd ti1 ti1(top) P1 tbp tca hc G V (NPr) J NRe	141.8 139.3 141.3 149.5 145.3 146.3 146.3 146.5 160.0 167.1 162.4 164.5 172.7 181.2 183.1 157.8 58,500 5.23 0 152.7 27.4 245.1 118.6 1,780 1,184,000 5.33 0.960 2.39 0.00346 25,100	141.9 139.1 141.4 142.9 146.1 148.9 145.5 148.0 160.3 167.0 163.6 165.2 173.2 180.4 177.8 182.2 160.1 60,300 5.39 0 0 154.7 183.0 28.7 247.8 118.6 1,720 1,212,000 5.46 0.958 2.39 0.00326 26,000	244.7 244.7 245.7 245.7 241.5 246.8 242.7 245.0 245.0 245.0 251.5 251.5 257.1 260.8 200.0006 0.30 243.9 251.3	253.3 251.9 253.6 254.1 254.5 254.5 254.5 256.6 259.2 263.7 2663.8 263.8 263.8 263.8 263.8 263.8 263.9	141.9 140.8 142.3 140.7 144.4 145.4 145.4 145.5 166.0 171.7 171.2 174.3 176.0 174.4 157.1 61,700 5.52 0.000020 1.23 150.3 167.2 28.7 247.8 118.1 1,980 1,208,000 5.44 0.962 2.40 0.00378 25,800

TABLE I. - SUMMARY OF WATER DATA AND RESULTS - Continued

Item	Run	36	37	38	40	42
TOOM		30	3,		, ,	
1234567890	We teo teo Ge Ws P ts hfg QL Qsc	8,180 116.1 119.7 29,400 31.8 34.3 258.1 938.5 690 29,160	758 181.3 210.5 22,250 25.4 102.6 329.7 886.0 1,260 21,290	765 181.0 206.9 19,800 23.2 104.4 331.0 885.2 1,245 19,200	758 180.3 203.3 17,430 22.2 104.5 331.0 885.0 1,375 18,255	2,182 168.1 180.3 26,600 30.0 102.8 329.8 886.0 1,280 25,300
11	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	-0:8	-4.5	-3.1	4-5	-5.1
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qav/Ao Atw 1/hd = 0 Atd = 0 tli(top) Pl tbp tca hc G V (NPr) J NRe	142.6 139.2 143.4 143.6 143.1 147.2 151.2 161.2 163.0 168.5 183.4 182.6 180.2 159.7 159.7 159.400 1.55.8 175.2 242.6 117.60 1,760 1,760 1,760 1,760 1,207,000 5.43 0.959 2.40 0.00335 25,700	250.8 247.6 251.6 251.6 252.4 251.9 265.9 266.9 266.9 271.8 266.9 271.8 261.8	254.2 251.0 255.1 255.1 260.6 271.5 260.3 274.3 277.5 278.9 281.0 278.9 281.0 278.9 281.0 278.9 281.0 278.9 279.5 27	254.4 251.3 255.4 255.4 265.2 278.8 285.2 286.7 288.1 3.27 0.58 285.2 286.7 288.3 285.2 286.7 3.27 0.58 285.3 285.3 285.3 285.3 285.3 285.3 285.3 285.3 285.3 285.3 285.3 285.3 285.3 285.3 286.	225.2 221.1 227.6 228.3 231.0 239.6 249.1 243.0 259.5 263.8 265.0 266.8 267.2 268.0 248.5 52,600 4.75 0.000024 1.26 242.5 25.4 241.0 174.2 796 322,000 1,473 0.943 1.68 0.00392 10,820

`~\NACA_~

TABLE I .- SUMMARY OF WATER DATA AND RESULTS - Continued

Item	Run	43	14.14	45	46	47
1 2 3 4 5 6 7 8 9 10 11	Wc tci tco qc Ws P ts hfg qL qsc Deviation in heat balance	2,208 172.1 185.0 28,460 34.5 102.2 329.4 886.0 1,300 29.260	2,158 165.9 172.6 14,460 15.9 33.5 256.7 939.0 700 14.190	1,766 185.8 201.9 28,430 32.1 107.5 333.1 883.4 1,280 27,080	8,180 116.1 120.0 31,900 32.0 34.3 258.1 938.5 630 29,400	5,110 179.0 184.6 28,600 34.9 100.6 328.2 887.3 1,240 29,660
12	(q _{sc} - q _c)(100)/q _{sc} , percent Temperatures A-1	222.1	-1.9 201.1	-5.0 243.5	-8.5 144.6	3.6 216.1
	A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4	87.53.1.1036.1003.4003.338.45.447.4.03.4.0	198.8 202.0 202.7 207.1 210.6 211.5 210.8 220.1 222.8 221.2 224.2 224.2 224.2 225.6 226.2	239.8 245.9 247.1 247.1 2553.7 2553.7 2561.7 263.1	140.8 145.5 146.2 146.9 152.1 151.6 154.7 165.1 171.0 166.5 172.5 184.6 183.5 182.1	211.7 217.1 218.1 217.6 223.1 226.1 226.1 235.2 240.3 237.1 242.4 255.2 253.8 255.1 255.7
13 14 15 16 17 18 19 20 21 22 23 24 25	tw qav/Ao Atw 1/ha Atd tl1 tl1(top) Pl tbp tca hc G	238.7 58,550 5.28 0.000028 1.64 231.8 246.9 15.8 215.6 178.6 1,135 326,000 1.495	214.7 29,050 2.61 0.000043 0.96 211.1 222.0 20.2 228.5 169.2 715 319,000 1.458	251.8 56,300 5.08 0.000037 2.08 244.6 255.7 19.1 225.5 193.8 1,142 261,000 1.202	161.9 61,000 5.45 0.000041 2.50 153.9 175.2 26.7 243.7 118.0 1,754 1,208,000 5.44	233.0 59,100 5.32 0.000046 2.72 225.0 247.0 19.0 225.2 181.8 1,410 755,000 3.46
26		0.955	0.962	0.959	0.958	0.963
27 20 29	(N _{Pr}) ^{2/3} J N _{Re}	1.65 0.00548 11,300	1.73 0.00374 10,340	1.52 0.00637 10,020	2.40 0.00334 25,700	1.62 0.00292 26,700

TABLE 1. - SUMMARY OF WATER DATA AND RESULTS - Continued

Item	Run	48	49	50	51	52
1. 2 3 4	Wc tc1 tco qc	5,150 179.1 185.4 32,400	4,190 189.4 195.9 27,250	4,160 189·1 195·6 27,040	4,160 188.6 194.8 25,800	4,160 187.8 194.2 26,650
5 6 7 8 9	Ws P ts hfg QL Qsc	34.4 100.6 328.2 887.4 1,260 29,250	32.4 100.2 328.0 887.6 1,290 27,460	31.8 98.7 326.9 888.4 1,300 26,900	31.2 100.7 328.3 887.3 1,290 26,360	32.8 100.7 328.3 887.3 1,285 27,760
112	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	-10.6	0.8	- 0.5	2.1	4.1
13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw day/Ao Atw 1/hd	218.3 214.3 220.4 220.4 220.4 225.5 225.8 239.2 249.5 255.6 255.6 255.6 255.6 255.6 255.6 255.6 255.6 255.6 255.6 256.6	28.4 231.0 201.0 2	28.5 28.4.5 28.4.5 28.30.7.5 28.31.6.0 28.31.6	229.1 225.2 230.6 232.1 236.8 237.1 240.4 254.3 256.8 266.0 265.0 266.7 266.2 52,900 4.77 0.000067	227.9 224.2 230.6 231.8 230.2 234.7 234.8 238.2 244.8 248.9 248.9 259.0 259.7 259.3 259.5 259.5 259.5 259.6 259.5 259.6 259.6
17 18 19 20 21 22 23 24 25	Atd t21 t21(top) P1 tbp tca hc G	3.19 225.8 246.8 24.4 238.7 182.2 1,481 764,000 3.51	3.16 235.6 250.4 17.9 222.0 192.6 1,335 619,000 2.86	3·39 235·1 252·7 22·3 233·8 192·4 1,325 614,000 2·83	3.54 237.9 257.3 29.0 248.4 191.7 1,181 614,000 2.83	3.94 233.5 250.2 17.7 221.5 191.0 1,340 615,000 2.83
26	(µ ₂) ⁰⁻¹⁴ _{2/3}	0.963	0.965	0.965	0.962	0.965
27 28 29	(N _{Pr}) ^{2/3} N _{Re}	1.62 0.00302 27,100	1.53 0.00318 23,550	1.54 0.00321 23,300	1.54 0.00286 23,200	1.55 0.00326 23,200

TABLE I. - SUMMARY OF WATER DATA AND RESULTS - Continued

_	D	 	 		γ	T
Item	Run	53	54	56	57	59
1234567891011 12145167891011	Run Wc tci tco qc Ws P ts hfg qL qsc Deviation in heat balance (qsc - qc)(100)/qsc, percent Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qsv/Ao Atw 1/hd Atd tli(top)	53 8,180 119.9 123.7 31,100 33.5 34.9 259.1 937.8 760 30,640 -1.5 153.5 149.4 157.5 153.0 158.0 157.1 161.0 173.4 177.9 174.5 179.5 190.3 190.4 187.5 169.2 62,700 5.62 0.000078 4.89 158.7 178.4	54 4,170 189.2 195.5 26,270 3100.2 328.0 887.6 1,280 26,180 -0.3 231.8 223.5 23.5	56 4,160 189.3 195.7 26,600 33.1 101.2 328.7 887.0 1,290 28,110 5.4 229.6 231.1 232.5 229.6 234.8 238.1 247.3 250.0 254.3 262.7	8,660 187.4 191.1 31,700 36.2 100.6 328.2 887.4 1,260 30,840 -2.8 217.1 213.0 219.2 220.2 215.4 219.3 229.7 235.0 237.3 249.5 249.7 249.2 229.7 63,400 5.71 0.000099 6.27 236.8	8,220 116.2 119.8 29,600 33.2 34.4 258.2 938.3 690 30,410 2.7 142.7 140.1 140.2 143.0 147.8 148.6 149.0 150.6 167.5 166.2 167.5 166.2 167.5 166.2 167.9 179.7 179.8 179.7 179.5 60,900 5.45 0 0 154.1
20 22 23 4 5.	rittory Pi tbp tca hc G	26.5 243.3 121.8 1,755 1,208,000	35.1 259.4 192.4 1,170 616,000 2.84	29.2 248.8 192.5 1,380 615,000	27.3 245.0 189.2 2,300 1,279,000	
26	(µ _x)0.14	0.958	0.962	2.83 0.966	5.88 0.97 5	5•47 0•958
27 28 29	N _{Pr}) ^{2/3}	2•33 0•00324 26,700	1.53 0.00280 23,400	1.53 0.00331 23,400	1.56 0.00274 47,500	2.40 0.00329 25,800

TABLE I -- SUMMARY OF WATER DATA AND RESULTS - Continued

Item	Run	60	வ	63	64	65
14 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 23 4 25 26	Wc tci tco qc Ws P ts hfg qL qgc Deviation in heat balance (qsc - qc)(100)/qsc, percent Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qav/Ao Atw l/hd Atd tli tli(top) Pl tbp tca hc G V	8,180 117.0 120.5 28,600 34.6 34.5 258.4 939.8 690 31,810 10.2 143.2 140.9 142.8 147.6 148.1 148.6 150.2 164.7 174.6 165.4 192.6 198.2 181.0 192.6 198.5 181.0 192.6 198.5 181.0 192.6 198	8,180 116.9 120.9 32,700 37.8 34.5 258.4 939.8 690 34,810 6.1 148.4 145.2 145.1 148.7 148.0 149.0 149.3 150.4 165.8 178.6 167.4 203.6 211.1 212.1 210.2 168.8 69,200 6.2 0.00002 1.4 161.2 201.6 28.2 246.8 118.9 1,690	437 105.1 140.0 15,240 17.3 34.4 258.2 939.9 690 15,540 1.9 220.7 224.5 219.3 214.1 219.4 218.9 246.8 247.2 245.0 242.2 245.0 242.8 230.6 31,200 242.8 230.6 31,200 242.8 250.6 247.8 246.9	447 107.6 181.1 32,850 38.9 38.2 309.3 1,060 34,340 4.3 259.4 259.4 259.4 259.4 259.4 259.4 259.4 259.4 259.4 259.4 259.4 259.4 259.4 259.4 259.6 260.9 266.0 274.1 259.6 266.0 276.1 266.0 276.1	8,140 116.8 120.8 32,560 38.3 34.1 257.8 940.2 780 35,220 7.6 169.1 155.4 161.6 149.5 149.7 149.4 162.8 165.7 196.9 199.7 203.0 199.7 206.3 206.
27 28 29	(N _{Pr}) ^{2/3} J N _{Re}	2.38 0.00324 25,950	2.38 0.00318 25,970	2.32 0.00999 1,438	2.01 0.01891 1,772	2.38 0.00312 25,840

TABLE I. - SUMMARY OF WATER DATA AND RESULTS - Continued

.AC

Item	Run	66	67	68	71	74
			 	<u> </u>		
ı	w _c	8,140	466	488	8,180	8,120
2	l [±] °.	116.0	141.4	91.8	116.3	115.2
3	tei	119.3	167.6	117.9	120.2	118.8
3 4	teo	26,860	12,210	12,740		
-	^Q c			12,140	31,900	29,230
5	Wa .	33.9	13.7	14.0	34.6	33.9
0	P	34.4	35.4	24.7	34.4	34.5
7	ts	258.2	259.9	239.4	258.2	258.4
В	h _{fg}	939.9	938.7	952.6	939.9	939.8
9	Q _L	720	760	580	720	700
10	q _{cs}	31,080	12,100	12,790	31,780	31,150
11	Deviation in heat balance	_	1			
12	$(q_{SC} - q_C)(100)/q_{SC}$, percent Temperatures	13.6	-0.9	0.4	-0.4	6.2
	A-1	144.3	219.9	194.5	151.2	139.7
	Y-5	144.3	217.5	190.6	147.9	
	A-3	142.2	215.7	187.8	148.6	140.5
	A-3 A-4	142.2	218.2			140-3
	B-1	147.2	226.0	191.1	157.5	141.1
		148.4		201.6	149.1	146.6
	B-2		226.3	202.0	150.1	147.7
	B-3	148.3	226.3	201.7	149.4	147.6
	B-4	148.8	226.6	201.7	150.2	149.0
	C-1	163.0	234.5	217.7	163.8	162.7
	C-2	167.2	235.6	218.5	168.8	166.1
	C-3	163.8	236.2	217.8	164.4	163.6
	C-4	165.5	236.5	218.4	166.8	166.5
	D-1	180.8	235.1	220.5	183.4	180.0
	D-2	180.7	235.6	220.5	183.0	181.5
	D-3	178.4	236.0	219.8	181.6	181.5
	D-4	177.5	236.6	220.7	180-3	177.6
13	tw ,	159.0	228.9	207.8	162.3	158.2
14	q _{av} /A _o	58,800	24,660	25,880	64,600	61,200
15	Δt	5.26	2.22	2.32	5.78	5.48
16	1/h _d	0.000008	0.000012	0.000016	0.000024	0
17	Δt_d	0.47	0.30	0.41	1.55	0
18	tli	153.3	226.4	205.1	155.0	152.7
19	t _{l1} (top)	173.7	233.3	217.7	174.8	174.6
20	P ₁	26.5	15.8	15.5	26.6	27.3
21	լ ե _{նը}	243.3	215.6	214.6	243.5	245.0
22	l ^v ca.	117.6	154.5	104.8	118.2	117.0
23	hc	1,700	354	266	1,818	1,770
24	G	1,203,000	68,800	72,000	1,208,000	1,200,000
25	v	5.40	0.313	0.323	5.44	5.47
06	Mw 0.14	. 058				
26	(Fa) (0.958	0.936	0.895	0.957	0.958
27	$\left(N_{\rm Pr}\right)^{2/3}$	2.41	1.88	2.65	2.40	2.42
28	3	0.00326	0.00905	0.00876	0-00345	0.00342
29	N _{Re}	25,560	2,000	1,348	25,800	25,350
· · ·	ve		,	-,	-,,	-/, //

NACA ...

TABLE I. - SUMMARY OF WATER DATA AND RESULTS - Concluded

Item	Run	75	76	77	78	79
1 2 3 4 5 6 7 8 9 10 11	Wc tci tco qc Ws P tsc hfg qL qcs Deviation in heat balance	454 90.7 140.7 22,700 25.5 61.2 294.0 914.5 1,020 22,280	502 87.5 111.7 12,150 13.1 21.6 232.1 957.4 460 12,040	1,137 93.9 110.3 18,630 20.6 34.6 258.6 939.6 700 18,620	740 89.7 108.6 15.980 15.2 28.5 236.7 954.4 500 14,020	1,572 140.9 151.6 16,820 18.5 33.5 256.7 940.9 680 16,730
	$(q_{sc} - q_c)(100)/q_{sc}$, percent	-1.9	- 0.9	-0-1	0-3	-0.5
13 14 15 16 17 18 19 20 21 22 23 24 25 26	Temperatures A-1 A-2 4-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw 1/hd Δtd tl1(top) Pl tbp tca hc G	192.9 194.9 194.9 194.9 198.9 221.5 222.4 222.9 223.3 244.3 245.5 246.5 249.1 255.1 268.5 250.4 229.8 45,600 4.11 0.000008 0.36 225.3 251.3 16.0 216.3 115.7 430 67,100 0.302 0.894	166.5 167.6 167.6 171.1 193.7 195.1 194.8 213.5 213.5 213.7 214.6 221.7 214.6 221.7 214.6 221.7 214.5 214.5 214.5 216.0 21	162.0 164.3 164.6 167.7 193.4 197.0 198.8 195.8 226.9 237.5 225.0 232.9 242.2 206.4 37,770 3.39 0.000016 0.60 202.4 228.1 31.5 253.2 102.1 388.5 168,000 0.753 0.894	158:9 160.9 161.1 164.8 189.2 191.3 191.4 190.9 216.3 223.9 224.5 221.0 215.9 220.4 225.7 217.6 198.4 28,400 2.55 0.000020 0.57. 195.3 247.4 99.2 305.6 109,300 0.490 0.896	183.4 185.8 185.9 187.4 202.7 206.6 207.1 206.7 245.0 239.2 227.1 234.5 241.5 241.5 228.6 216.4 34,030 3.06 0.000024 0.82 212.5 229.0 33.6 256.9 146.2 529 232,000 1.05 0.937
27 28 29	N _{Pr}) ^{2/3}	2.44 0.01400 1,400	2.77 0.00880 1,313	2.71 0.00560 3,060	2.77 0.00 <i>6</i> 93 1,936	1.99 0.00426 6,320

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS

Item	Run	81.	83	85	86	87
1 2 3 4 5 6 7 8 9	Wc tc1 tco qc Ws P ts hfg qL qsc	5,810 84.7 91.0 22,100 26.20 25.6 241.4 951.2 600 24,300	5,960 88.6 94.9 22,930 25.80 25.9 242.0 950.8 550 23,980	3,146 81.1 88.6 14,250 15.82 14.7 212.0 970.2 340 14,990	1,792 75.1 84.9 10,550 11.61 14.7 212.0 970.2 550 10,710	1,786 73.1 83.2 10,780 11.77 14.8 212.3 970.0 530 10,880
111	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	9.1	4.3	4.9	1.5	0.9
13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw day/Ao Atw 1/hd	140.3 139.8 135.8 135.8 157.2 159.4 158.5 178.3 180.3 177.7 191.1 188.8 186.8 185.9 47,100 4.22	143.5 142.9 139.0 142.4 160.9 160.3 181.0 189.3 189.3 189.8 168.60 47.6	143.8 143.2 139.0 143.8 165.6 165.6 165.2 179.5 180.0 180.3 179.0 180.3 179.0 178.0 178.0 178.0 178.0 178.0 179.6 179.6 179.6	154.6 153.6 150.2 154.9 179.1 180.2 194.1 193.2 194.4 194.6 188.8 188.6 188.6 178.7 1.93	154.1 153.3 149.6 154.4 179.6 181.1 180.5 179.6 193.2 194.3 194.3 194.3 188.4 189.2 188.7 186.7 178.8 21,970 1.97
17 18 19 20 21 22 23 24 25	Atd tl1 tl1(top) P1 tbp tca hc G	161.7 183.6 31.5 186.0 87.8 627 859,000 4.90	164.3 186.1 30.0 183.4 91.8 645 881,000 5.04	165.5 178.4 41.8 200.9 84.8 362 465,000 2.65	177.0 192.2 40.8 199.6 80.0 218 265,000 1.50	176.8 192.2 48.4 209.1 78.2 219 263,600 1.49
26		0.931	0.932	0.924	0.911	0.909
27 28 29	(N _{Pr}) ^{2/3} N _{Re}	3·391 0·00387 20,560	3·350 0·00374 21,720	3.422 0.00406 10,860	3·475 0·00435 5,970	3.496 0.00442 5,850

-- NACA

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Continued

Item	Run	88	90	91	92	93
1234567890	Wc tci tco qc Ws P ts hfg qL	6,000 87.5 94.1 24,160 26.06 25.4 241.0 951.6 700 24,100	1,050 75.6 88.4 8,085 8.90 14.9 212.7 969.7 530 8,095	8,570 92.8 97.7 25,800 28.60 26.3 242.9 950.3 680 26,520	699 81.8 97.5 6,510 7.24 14.8 212.4 969.9 540 6,470	8,730 99.3 104.0 25,440 27.84 26.1 242.4 950.6 700 25,750
n	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	-0.2	0.1	2.7	-0.7	1.2
12 13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qay/Ao At 1/ha	144.1 143.4 138.7 142.3 161.9 161.7 161.4 183.9 183.4 183.9 183.4 183.9 183.4 183.9 183.4 183.9 183.8 183.9	165.6 165.1 166.7 190.0 191.3 190.8 189.9 201.2 202.5 202.1 202.1 195.3 196.6 194.9 188.3 16,430 1.47	138.6 138.5 134.0 136.8 149.8 152.1 151.6 152.0 171.9 173.9 173.2 185.5 185.8 181.0 161.2 53,04	173.7 173.5 170.8 174.7 194.7 195.4 195.4 194.6 204.3 204.3 204.3 198.1 199.4 197.8 197.8 197.8 197.8	142.9 142.7 138.4 141.4 154.3 155.5 154.8 173.7 175.3 171.9 184.3 184.3 184.0 51,90 4.64
17 18 19 20 21 22 23 24 25	Atd tii tii(top) Pi top tca hc G	164.8 186.5 35.8 192.6 90.8 650 886,000 5.05	186.8 200.5 48.8 209.6 82.0 154.8 155,000 0.879	156.5 179.7 39.0 197.2 95.2 850 1,267,000 7.26	191.6 202.9 52.0 213.5 89.6 127.2 103,200 0.589	159.4 181.0 37.5 195.1 101.6 882 1,290,000
26	μ _a	0.931	0.905	0.942	0.909	0.946
27 28 29	(N _{Pr}) ^{2/3} J N _{Re}	3.360 0.00376 21,700	3.452 0.00516 3,540	3.318 0.00342 32,100	3-374 0-00620 2,500	3.260 0.00340 34,200

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Continued

Item	Run	94	95	96	98	99
12345678901 1 115	Wc tci tco qc Ws P ts hfg qL qsc Deviation of heat balance (qsc - qc)(100)/qsc Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qsv/Ao Atw	423 · 08 · 8 · 0 · 0 · 8 · 0 · 108 · 8 · 9 · 7 · 0 · 0 · 108 · 9 · 9 · 9 · 108	5.6.1.00 5.8.1.00 5.9.1.00 1.9.1.	5,930 86.2 15,99 14.8 15.8 12.9 15.5 100.5	59.52 245 99.52 245 99.52 25 99.52 26.11 99.52 26.11	422 100.5 119.2 4,960 5.72 14.8 212.4 969.9 520 5,030 1.4 185.6 201.5 201.5 201.7 205.8 206.7 206
16 17 18 19 20 21 22 23 24 25	1/hd Atd tl1 tl1(top) Pl tbp tca hc G V	197.5 205.5 51.2 212.6 109.4 111.7 62,500 0.362	148.9 167.3 34.4 190.6 89.5 625 879,000 5.02	139.7 166.4 37.9 195.7 89.0 606 876,000 4.99	166.7 188.6 38.8 196.9 92.8 655 875,000	197.5 205.6 50.9 212.3 109.8 113.6 62,300 0.360
26 27 28 29	N _{PT}) 2/3	0.924 3.195 0.00840 1,756	0.943 3.375 0.00372 21,300	0.950 3.378 0.00366 21,150	0.931 3.341 0.00380 21,750	0.924 3.191 0.00856 1,756

NACA_

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Continued

Item	Run	100	101	103	104	105
1234567890	Wc tci tco qc Ws P ts hfg qL	6,140 84.7 91.2 24,200 26.13 26.7 243.7 949.7 640 24,160	5,970 84.8 91.3 23,560 25.23 26.7 243.7 949.7 610 23,350	6,000 86.5 92.6 22,250 25.88 26.4 243.1 950.2 660 23,940	426 100.0 118.8 5,030 5.57 14.9 212.7 969.6 500 4,890	426 99.5 123.6 6,460 6.99 15.0 213.0 969.4 530 6,240
112	Deviation in heat balance $(q_{gc} - q_c)(100)/q_{gc}$, percent Temperatures	-0.2	-0.9	7.1	-2.9	-3.5
13 14 15 16	A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw 1/h _d	139.5 139.6 137.5 157.8 158.4 158.9 177.2 184.4 179.6 184.5 191.9 174.0 179.2 174.5 191.39 164.5 19.09	139.3 139.7 135.0 137.3 156.6 159.6 159.4 179.4 178.2 179.6 183.7 192.6 175.3 163.4 47,600 4.26	139.8 136.9 140.0 139.9 159.1 160.7 160.0 160.7 177.8 178.7 180.9 183.4 184.0 183.2 187.7 183.6 166.0 46,800 4.19	183.4 181.6 184.5 184.1 200.8 201.7 200.8 210.4 211.1 209.5 210.2 202.1 202.8 201.2 202.8 201.2 199.2 10,060 0.90	184.1 182.3 185.2 185.0 201.4 202.1 201.6 209.5 210.2 208.5 209.5 199.6 200.1 200.4 198.7 198.8 12,880 1.16
17 18 19 20 21 22 23 24 25	Atd tli tli(top) Pl tbp tca hc G	159.8 178.2 37.4 195.0 88.0 671 907,000 5.18	159.1 178.5 37.6 195.2 88.0 659 882,000 5.03	161.8 180.4 38.1 196.0 89.6 636 886,000 5.06	198.3 209.4 42.0 201.1 109.4 111.3 62,900 0.364	197.6 208.2 37.8 195.5 111.6 147.8 62,900 0.364
26	$\left(\frac{\mu_{\underline{w}}}{\mu_{\underline{a}}}\right)^{0.14}$	0.932	0.933	0.932	0.923	0.925
27 28 29	(N _{Pr}) ^{2/3} N _{Re}	3.389 0.00386 21,740	3.388 0.00388 21,150	3·374 0·00372 21,500	3.193 0.00830 1,770	3.176 0.0109 1,793

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Continued

Item	Run	106	107	108	109	110
1 2 3 4 5 6 7 8 9 10	Wc tci tco qc Ws P ts hfg qL qsc	426 99.2 125.5 7,080 7.70 15.0 213.0 969.5 530 6,930	426 100.0 123.3 6,260 6.80 15.0 213.0 969.5 530 6,060	427 99.6 127.0 7,390 7.97 15.0 213.0 969.5 530 7,200	426 100.0 134.8 9,440 10.12 15.0 213.0 969:5 530 9,290	425 100.1 138.7 10,490 11.38 15.0 213.0 969.5 530 10,500
111	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	-2.2	-3-3	-2.6	-1.6	0.1
13 14 15	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qav/Ao Atw 1/hd	183.2 181.4 184.1 184.1 200.3 201.0 200.5 200.7 207.8 208.9 206.8 207.9 198.2 198.2 198.9 199.1 197.2 197.5 14,200 1.28	183.4 181.8 184.5 184.3 200.8 201.6 201.0 209.5 210.0 208.7 208.7 197.2 197.2 197.3 197.7 195.9 197.7 12,500 1.12	183.2 181.6 184.4 184.1 199.9 199.2 199.3 200.2 208.2 207.6 206.7 207.1 197.6 197.6 198.4 196.3 197.0 14,810 1.33	182.1 180.1 182.7 182.8 195.3 192.7 192.9 195.1 204.4 206.9 204.4 195.8 195.9 197.2 195.0 194.1 18,990 1.70	180.0 178.2 180.1 180.4 190.0 188.9 188.6 189.5 203.5 205.9 201.0 203.2 194.2 194.2 195.4 193.6 191.7 21,300 1.91
17 18 19 20 21 22 23 24 25	Atd t11 t11(top) Pl tbp tca hc G	196.2 206.5 34.3 190.4 112.4 166.8 62,900 0.364	196.6 208.1 31.7 186.3 111.6 145.2 62,900 0.364	195.7 206.1 28.4 180.5 113.3 176.3 63,100 0.366	192.4 202.9 25.6 175.1 117.4 248.5 62,900 0.366	189.8 201.5 22.6 168.9 119.4 298.6 62,800 0.366
26	$\begin{pmatrix} \mu_{\mathbf{y}} \\ \mu_{\mathbf{a}} \end{pmatrix}^{0.14}$	0.928	0.926	0.929	0.935	0.939
27 28 29	(N _{Pr}) ^{2/3} N _{Re}	3.1 <i>6</i> 9 0.01254 1,807	3.175 0.01074 1,791	3.160 0.01300 1,822	3.129 0.01820 1,870	3.115 0.02170 1,891

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Continued

Item	Run	111	113	114	115	116
1 2 3 4 5 6 7 8 9 10 11 12	Wc tci tco qc Ws P ts hfg qL qsc Deviation in heat balance (qsc - qc)(100)/qsc, percent Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2	111 423 100.2 143.5 11,760 12.62 15.0 213.0 969.5 530 11,710 -0.4 178.0 176.4 178.0 178.2 185.2 185.2 185.2 185.2 185.2 185.2 185.2 185.2 185.2 185.2	113 5,960 84.9 91.4 26.9 24.530 26.9 24.49.0 3.5 139.6 139.6 140.1 160.1 1781.8 183.6 183.6	114 434 101.5 137.8 10,080 10.52 14.8 212.3 970.0 480 9,720 -3.7 177.1 178.5 178.9 185.7 185.7 185.7 186.8 191.1 192.4 192.3	115 428 101.0 142.9 11,510 12.28 24.7 239.4 952.6 600 11,100 -3.7 199.9 197.8 199.8 210.9 209.1 207.3 207.3 207.3 207.3 207.3 215.6 215.6 215.6 215.8	116 404 102.0 150.9 12,790 13.86 24.8 239.6 952.4 630 12,570 -1.8 195.8 195.9 204.1 203.7 204.3 210.2 211.1 210.6 212.4 212.0
13 14 15 16 17 18 19 20	D-3 D-4 tw qav/Ao Atw 1/hd Atd t11 t21(cop)	194.4 192.0 189.6 23,810 2.14 187.5 200.3	187.2 183.4 166.4 49,300 4.41 162.0 180.1 39.3	194.0 191.8 187.4 20,230 1.82 185.6 191.1	216.7 214.9 209.7 22,960 2.06 207.6 213.7 34.1	213.3 211.6 205.6 25,720 2.31 203.3 210.0 28.1
21 22 23 24 25	P ₁ tbp tca hc G V	162.1 121.8 356.4 62,500 0.364	197.7 88.2 656 881,000 5.03	161.0 119.6 302.8 64,100 0.373	190.2 122.0 264.0 63,200 0.369	179.9 126.4 330.0 59,600 0.349
26 27 28 29	$\begin{pmatrix} \mu_{\mathbf{w}} \\ \mu_{\mathbf{a}} \end{pmatrix}^{2/3} \\ \chi_{\mathbf{Re}} \\ \chi_{\mathbf{Re}}$	0.942 3.097 0.02600 1,914	0.930 3.386 0.00386 21,160	0.942 3.114 0.0216 1,933	0.928 3.095 0.0187 1,942	0.936 3.064 0.0246 1,887

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Continued

Item	Run	117	118	121	122	123
12345678901	Wc tci tco qc Ws P ts hfg qL qsc	406 101.3 154.9 14,120 15.46 24.8 239.6 952.4 640 14,080	396 101.3 155.8 14,020 15.87 24.5 239.0 952.9 630 14,490	1,048 97.2 117.9 13,590 15.32 26.6 243.5 949.8 660 13,890	1,043 97.4 116.2 12,290 14.37 26.4 243.0 950.1 650 13,000	1,047 98.3 114.9 10,870 12.23 26.5 243.3 949.9 650 10,970
12	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	-0-3	3.2	2.2	5.5	0.9
13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw Qav/Ao At/Ad	191.1 189.5 190.8 191.5 198.7 198.5 198.5 199.4 206.6 207.1 208.9 208.9 208.6 210.4 208.5 208.5 208.5 208.5 208.5	189.0 187.0 188.4 189.1 195.8 195.8 195.8 196.7 204.1 204.8 205.7 206.4 206.1 208.2 205.2 199.0 28,920 2.60	190.0 187.2 190.8 191.3 207.7 206.8 206.6 210.7 211.5 212.5 212.0 213.1 210.2 210.2 210.2 210.3 210.4 205.2 27,900 2.50	190.5 187.7 191.5 191.8 211.1 210.2 211.6 214.7 215.6 215.8 212.5 212.5 213.4 213.4 213.4 213.4 213.4 213.4 213.4 213.4 213.6 213.4 213.6 21	192.4 189.7 193.6 193.8 217.9 217.9 217.9 220.3 220.3 216.9 216.9 216.9 216.9
17 18 19 20 21 22 23 24 25	Atd tli tli(top) Pl tbp tca hc G	198.9 206.4 23.2 170.1 128.1 396 60,000 0.352	196.4 203.9 20.2 163.2 128.6 420 58,500 0.343	202.7 209.8 29.0 181.6 107.6 288.6 154,800 0.894	205.2 213.3 33.9 189.8 106.8 256.8 154,100 0.889	209.9 218.8 40.2 198.8 106.6 211.4 154,700 0.893
26	$\left(\frac{\mu_{\mathbf{w}}}{\mu_{\mathbf{g}}}\right)^{0.14}$	0.940	0.942	0.919	0.916	0.913
27	$\left(N_{\rm Pr}\right)^{2/3}$	3.052	3.048	3.208	3.214	3.216
29 28	ງ N _{Re}	0.0294 1,922	0.0318 1,880	0.00877 4,290	0.00785 4,250	4,260

-- NACA

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Continued

Item	Run	124	125	126	127	128
1 2 3 4 5 6 7 8 9 10	Wc tci tco qc Ws P ts hfg qL	6,000 86.1 92.5 23,360 26.26 26.8 243.9 949.6 670 24,250	1,050 100.1 114.9 9,740 11.19 26.6 243.5 949.9 660 9,960	1,049 95.7 118.4 14,930 16.57 27.0 244.3 949.3 670 15,060	1,050 94.1 119.1 16,420 18.21 26.7 243.7 949.7 660 16,640	1,051 85.6 102.6 10,970 12.02 26.8 243.9 949.6 660 10,760
11.	Deviation in heat balance $(q_{SC} - q_C)(100)/q_{SC}$, percent	3.7	2.2	0-9	1.3	-2.0
13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qav/Ao Atw 1/hd	140.5 138.1 141.3 142.5 166.8 166.9 169.6 183.6 183.7 183.8 183.7 183.8	194.0 191.1 194.7 194.9 219.2 219.2 219.7 227.7 229.5 229.7 219.7 217.9 217.9 217.9 217.9 217.9	187.7 185.0 187.7 188.4 203.7 201.7 201.0 202.1 208.4 208.8 210.0 209.7 209.3 211.5 208.4 202.0 30,430 2.73	183.0 180.5 180.5 183.6 195.9 195.5 195.5 203.6 204.6 204.6 204.6 204.6 33.5 3.01	188.6 185.4 189.5 189.5 216.7 217.9 216.9 217.2 224.2 224.2 224.2 224.8 218.1 218.5 219.4 216.9 212.1 22,030 1.98
17 18 19 20 21 22 23 24 25	Atd tli tli(top) Pl tbp tca hc G	162.5 180.1 37.3 194.9 89.3 649 886,000 5.06	213.2 225.6 46.5 206.8 107.5 186.0 155,100 0.896	199.3 207.0 24.3 172.5 107.0 323.7 155,000 0.896	193.6 202.2 18.8 159.8 106.6 378.4 155,100 0.894	210.1 222.5 50.4 211.7 94.1 186.5 155,200 0.888
26	μ _a	0.931	0.912	0.921	0.924.	0.901
27 28 29	N _{Pr}) ^{2/3}	3.376 0.00378 21,430	3.208 0.00559 4,300	3.212 3.00990 4,280	3.21,6 0.011 <i>6</i> 2 4,270	3.328 0.00587 3,900

NACA.

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Continued

Item	Run	129	130	131	132	133
1 2 3 4 5 6 7 8 9 0	Wc tci tco qc Ws P ts hfg qL	1,050 95.0 123.1 18,530 20.44 29.2 248.8 946.3 680 18,660	2,960 94.8 103.6 16,100 18.35 26.8 243.9 949.6 680 16,740	2,954 95.2 104.0 16,080 18.34 27.1 244.6 949.1 650 16,750	2,975 95.5 104.2 16,080 18.12 26.5 243.3 950.0 640 16,580	2,960 95.5 104.9 17,260 19.41 26.4 243.0 950.1 640 17,780
n	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	0.7	3.8	4.0	3.1	2.9
13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qav/Ao Atw 1/hd	182.3 180.0 182.1 182.7 193.1 193.1 194.0 201.6 201.6 201.6 203.4 204.1 203.4 205.7 202.6 195.2 37,730 3.39	165.9 162.7 166.6 167.4 191.5 193.3 192.0 192.4 206.2 207.7 208.2 207.7 208.2 203.7 204.4 206.1 202.8 192.4 33,310 2.99	166.8 163.8 167.7 168.3 192.6 194.0 193.1 193.5 207.0 208.4 209.5 205.7 205.9 207.7 205.6 33,310 2.99	166.1 163.4 167.0 167.7 191.8 193.3 192.2 192.6 205.7 207.3 208.8 203.9 204.4 206.1 203.5 192.6 33,120 2.97	165.6 162.5 166.8 167.0 190.6 192.2 191.5 199.9 199.6 202.1 203.2 199.6 199.0 200.8 198.1 189.4 35,540 3.19
17 18 19 20 21 22 23 24 25	Atd tli tli(top) Pl tbp tca hc G	191.8 200.6 16.4 153.1 109.0 448 155,200 0.897	189.4 204.4 28.8 181.3 99.2 363.3 437,000 2.51	190.6 205.3 33.8 189.6 99.6 360.0 436,000 2.50	189.6 204.3 23.7 171.2 99.8 362.7 439,000 2.52	186.2 199.0 17.8 157.0 100.2 406 437,000 2.51
26	$\left(\frac{\mu_{\mathbf{w}}}{\mu_{\mathbf{a}}}\right)^{0.14}$	0.928	0.920	0.920	0.921	0.924
27 28 29	N _{Pr}) ^{2/3}	3.195 0.01368 4,350	3.280 0.00405 11,380	3.278 0.00402 11,400	3.276 0.00402 11,500	3.271 0.00453 11,490

NACA -

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Continued

Item	Run	134	135	136	137	138
1 2 3 4 5 6 7 8 9	Wc tci tco qc Ws P ts hfg q _I q _{SC}	2,952 97.2 108.0 19,810 22.81 33.3 256.4 941.2 750 20,720	2,980 94.1 107.2 24,220 27.40 44.7 274.0 928.9 840 24,560	2,961 91.7 106.3 26,790 31.06 55.4 207.5 919.3 930 27,610	6,000 88.6 95.0 23,400 26.23 26.7 243.7 949.7 660 24,250	5,520 112.8 118.6 20,250 22.65 27.0 244.3 949.3 660 20,820
11	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	4.4	1.4	3.0	3-5	2.7
13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw Qay/Ao Atw 1/hd	172.2 167.2 173.3 174.2 199.9 199.0 199.8 205.5 207.6 207.5 20	176.2 172.4 177.3 178.2 20.6 201.7 204.6 206.1 206.1 209.7 209.7 209.8 49.47 4.44	179.4 175.5 180.1 180.5 201.8 201.4 206.6 207.7 213.5 211.8 211.8 211.8 211.8 211.8 211.8 211.8 211.8	149.4 149.4 149.4 163.6 163.6 165.5 168.3	160.7 158.4 160.7 12.0 176.9 177.8 177.1 177.8 190.6 191.3 192.4 194.0 195.6 199.0 194.7 181.6 41,660 3.74
17 18 19 20 21 22 23 24 25	Atd tli tli(top) Pl tbp tca hc G	191.6 202.1 18.9 160.0 102.6 455 436,000 2.51	194.4 206.1 19.1 160.5 100.6 519 440,000 2.53	195.6 208.3 19.0 160.2 99.0 561 438,000 2.51	164.3 181.9 37.8 195.5 91.8 655 886,000 5.06	177.9 192.6 27.9 179.6 115.7 659 815,000
26	$\left(\frac{\mu_{\mathbf{w}}}{\mu_{\mathbf{a}}}\right)^{0.14}$	0.922	0.918	0.916	0.932	0.945
27 28 29	N _{Pr}) ^{2/3}	3.250 0.00502 11,660	3.268 0.00571 11,600	3.282 0.00624 11,410	3.351 0.00378 21,850	3.143 0.00378 23,940

TABLE II. - SUMMARY OF METHANOL DATA AND RESULTS - Concluded

Item	Run	139	140	141	142	143	144
123456789011	Wc tci tco qc Ws P ts hfg qL Qsc	5,520 113.2 118.8 19,610 22.65 26.9 244.3 949.3 660 20,820	5,520 113.2 119.3 21,500 24.82 34.5 258.2 939.8 750 22,600	5,485 113.8 120.6 23,820 27.27 42.9 271.6 929.3 840 24,500	5,485 114.7 122.5 27,200 30.86 56.0 288.2 918.8 940 27,420	5,520 115.0 124.0 31,750 37.10 83.0 314.6 899.1 1,170 32,150	2,965 91.9 109.6 32,570 38.40 83.0 314.6 899.1 1,170 33,340
12	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percontemporatures	ent 5.8	4.9	2.8	0.8	1.2	2.3
13 14 15 16	A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 two flav/Ao Act, 1/h.	160.9 158.9 161.1 162.0 177.1 178.3 177.4 178.0 190.9 191.7 192.6 194.9 195.8 195.8 199.0 194.5 181.8 41,020 3.68	165.0 165.2 165.2 166.3 182.3 183.9 183.2 183.9 198.3 199.6 200.1 202.6 204.4 204.4 207.5 203.7 188.3 44,800 4.02	169.9 167.7 170.2 171.5 188.6 190.0 189.1 190.0 205.5 207.0 207.7 210.2 212.7 215.4 211.1 195.0 49,000 4.40	175.5 172.6 175.5 177.0 195.4 196.5 195.7 196.2 210.0 211.1 211.8 214.7 216.9 216.1 219.6 215.2 200.0 55,400 4.97.	183.4 180.7 183.9 185.4 205.2 206.6 205.7 206.6 215.2 216.9 218.3 219.6 224.6 223.2 227.3 221.9 207.8 64,800 5.83	186.6 183.8 186.6 188.4 199.8 200.0 201.6 209.7 214.3 212.2 215.1 220.2 218.7 223.6 219.5 205.0 66,900 6.01
17 18 19 20 21 22 23 24 25	Atd tli tli(top) Pl tbp tca hc G	178.1 192.5 23.0 169.7 116.0 650 815,000	184.3 201.0 23.1 170.0 116.2 646 815,000 4.73	190.6 208.6 23.3 170.3 117.2 658 810,000	195.0 212.0 23.1 170.0 118.6 714 810,000	202.0 218.4 23.1 170.0 119.5 771 815.000 4.74	199.0 214.5 19.2 160.7 100.8 670 438,000 2.52
26	$\left(\frac{\mu_{\mathbf{y}}}{\mu_{\mathbf{e}}}\right)^{0.14}$	0.945	0.940	0.936	0.934	0.930	0.915
27 28 29	(N _{Pr}) ^{2/3}	3.140 0.00374 24,000	3.138 0.003 <i>6</i> 8 24,100	3.130 0.00374 21,040	3.121 0.00403 24,280	3·114 0·00430 24,570	3.266 0.00739 11,570

TABLE III. - SUMMARY OF DATA AND RESULTS; METHANOL WITH ENTRAINED AIR

Item	Run	145	145A	145B	145C	146
1234567890	Wc tci tco qc Ws P ts hfg qL	5,520 93.2 98.4 17,680 18.97 14.9 212.7 969.6 540 17,840	5,505 93.6 98.9 18,050 19.79 14.9 212.7 969.6 540 18,660	5,520 93.7 99.2 18,770 19.97 15.0 213.0 969.6 540 18,800	5,500 93.7 99.1 18,360 20.56 14.9 212.7 969.6 540 19,380	2,572 83.1 91.4 12,600 13.74 14.9 212.7 969.7 550
12	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent Temperatures	0.9	3-3	0.2	5-3	1.3
13 14 15 16	A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qay/Ao Atw 1/hd	137.3 135.5 137.3 138.2 153.3 154.6 154.6 154.4 166.5 167.7 168.8 170.6 171.5 171.0 174.4 158.0 36,020 3.22	137.8 135.7 137.9 138.4 152.5 153.0 153.7 165.2 166.3 167.5 169.4 170.2 169.5 173.1 170.7 157.2 37,240 3.33	137.0 135.5 137.2 138.4 151.5 152.1 164.1 165.1 166.3 168.6 170.1 169.2 172.4 170.6 156.4 38,100 3.41	136.4 134.6 137.3 148.2 149.5 149.5 168.6 167.6 168.5 168.5 170.6 154.30 154.30 154.30 154.30 154.30 154.30	149.2 146.8 149.9 150.8 173.1 174.6 173.3 174.2 185.9 187.5 187.2 188.1 182.3 183.0 184.1 183.0 173.3 25,730 2.30
17 18 19 20 21 22 23 24 25	Atd tli tli(top) P1 tbp tca hc G	154.8 169.1 23.2 170.2 95.8 600 815,000 4.67	153.9 167.6 23.2 170.2 96.2 634 813,000 4.66	153.0 167.2 23.6 171.0 96.4 661 816,000 4.68	151.1 165.4 24.4 172.7 96.4 688 813,000 4.66	171.0 184.9 27.0 177.9 87.4 302.8 380,000 2.16
26		0.944	0.945	0.946	0-948	0.923
27 28 29 30 31 32	(Npr) 2/3 J NRe Wa Qa Air, percent	3.312 0.00376 20,700 0 0	3.308 0.00397 20,750 0.1547 1.678 1.46	3.307 0.00411 20,850 0.464 4.93 4.16	3.307 0.00431 20,780 1.258 12.82 10.16	3.396 0.004 <u>11</u> 9,050 0 0

TABLE III. - SUMMARY OF DATA AND RESULTS; METHANOL WITH ENTRAINED AIR - Continued

Item	Run	146A	146B	1460	147	147A
1234567890	Wc tci tco qc Ws P ts hfg qL	2,586 83.2 92.1 13,190 14.92 14.9 212.7 969.7 540 13,930	2,564 82.4 92.3 15,380 16.45 15.0 213.0 969.5 550 15,400	2,557 82.9 93.5 16,440 17.95 14.9 212.7 969.6 540 16,860	1,037 73.8 86.9 8,140 8.88 15.1 213.4 969.4 540 8,070	1,037 74.3 89.7 9,610 10.60 14.9 212.7 969.7 530 9,750
11	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	5.3	0.1	2.5	-0.8	1.4
13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qev/Ao Atw 1/hd	147.7 144.0 147.6 148.6 170.1 170.3 169.7 170.4 181.9 182.5 183.1 184.3 180.6 182.7 181.3 170.4 27,500 2.46	144.0 141.3 144.0 145.4 162.9 163.8 163.4 164.5 177.3 178.7 179.2 181.0 179.1 179.2 181.6 180.3 166.6 31,200 2.79	141.6 139.3 142.0 142.9 157.5 157.9 157.3 158.0 172.2 172.4 173.3 174.2 175.3 174.2 175.6 161.8 33,780 3.02	165.2 162.3 166.1 190.6 191.8 190.9 191.2 202.3 203.0 203.0 203.0 195.8 196.9 196.5 196.5 195.3 188.7 16,440 1.47	155.7 153.1 156.7 157.5 184.5 187.2 185.8 195.4 197.1 197.1 197.1 199.2 194.0 193.5 199.6 193.6 197.6
17 18 19 20 21 22 23 24 25	Δtd tli tli(top) Pl tbp tca hc G	167.9 180.5 27.0 177.9 87.6 337.4 382,300 2.18	163.8 177.2 27.2 178.2 87.4 401 379,200 2.16	158.8 172.0 27.2 178.2 88.2 470 378,000 2.16	187.2 201.2 39.5 197.9 80.4 151.4 153,200 0.869	180.9 195.1 39.8 198.3 82.0 195.2 153,200 0.870
26	$\begin{pmatrix} \frac{\mu_w}{\mu_a} \end{pmatrix}^{0.14}$	0.925	0.928	0.933	0.903	0.910
27 28 29 30 31 32	(Npr) ^{2/3} NRe We Qe Air, percent	3·393 0·00455 9,130 0·1552 1·330 2·46	3.396 0.00549 9,030 0.466 3.96 6.99	3·387 0·00649 9,060 1·470 12·48 19·22	3.470 0.00515 3,462 0 0	3.452 0.00665 3,504 0.0965 0.523 2.41

TABLE III. - SUMMARY OF DATA AND RESULTS; METHANOL WITH ENTRAINED AIR - Continued

Item	Run	147B	148	148A	148B	148c
1234567890	Wc tci tco qc Ws P ts hfg qL q	1,048 75.8 94.4 11,890 12.39 14.9 212.7 969.6 520 11,490	5,471 113.4 122.6 32,170 36.90 83.1 314.7 899.1 1,130 32,050	5,330 113.5 123.1 32,600 37.00 83.0 314.6 899.1 1,120 32,110	5,370 114.3 123.8 32,440 37.80 83.0 314.6 899.1 1,110 32,890	5,340 114.2 123.7 32,360 37.90 83.0 314.6 899.1 1,110 32,970
11	Deviation in heat balance $(q_{sc} - q_c)(100)/q_{sc}$, percent	- 3.5	-0.4	-1.4	1.4	1.9
13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qav/Ao Atw 1/ha	153.8 151.8 154.6 155.1 177.0 181.2 179.4 179.8 188.1 188.4 188.5 188.5 184.5	184.1 184.5 185.0 206.4 207.8 200.8 200.8 220.5 220.9 20.9	183.3 184.6 185.6 205.9 205.9 205.0 206.3	183.4 180.7 183.4 185.2 201.9 202.1 201.6 203.0 217.6 219.0 219.2 227.7 226.5 230.7 225.4 208.2 66,250 5.95	181.4 178.3 181.4 183.2 197.2 197.2 196.9 197.8 216.4 217.4 217.6 221.4 227.5 225.7 230.0 224.8 205.9 66,250 5.95
17 18 19 20 21 22 23 24 25	Atd tli tli(top) P1 tbp tca hc G	172.4 184.7 40.2 198.8 85.1 267.8 155,000 0.882	204.0 221.9 23.3 170.4 118.0 745 808,000 4.69	203.6 222.4 23.3 170.4 118.3 759 787,000 4.58	202.2 221.6 23.3 170.4 119.0 783 794,000 4.62	199.9 221.0 23.9 171.7 119.0 805 789,000 4.59
26	$\begin{pmatrix} \mu_{\mathbf{x}} \\ \mu_{\mathbf{a}} \end{pmatrix}^{0.14}$	0.919	0.927	0.928	0.929	0.931
27 28 29 30 31 32	(N _{Pr}) ^{2/3} NRe Wa Qa Air, percent	3.418 0.00895 3,632 0.3488 1.898 8.13	3.125 0.00420 24,120 0 0	3.122 0.00437 23,570 0.1468 1.958 1.724	3.118 0.00449 23,880 0.476 6.38 5.36	3.118 0.00465 23,720 1.197 15.39 12.08

TABLE III. - SUMMARY OF DATA AND RESULTS; METHANOL WITH ENTRAINED AIR - Continued

Item	Run	149	149A	149B	149C ·	150
1234567890	Wc too too too ws P ts hfg	2,761 92.3 110.3 30,370 36.69 83.1 314.7 899.0 1,150 31,830	2,761 92.7 110.8 31,030 36.89 83.1 314.7 899.0 1,140 32,020	2,761 92.1 110.2 30,980 37.01 83.1 314.7 899.0 1,130 32,140	2,752 91.0 109.6 31,730 37.68 82.6 314.2 899.4 1,140 32,750	954 103.0 125.3 13,470 14,83 26.8 243.9 949.5 680 13,400
11	Deviation in heat balance (qsc - qc)(100)/qsc, percent	4.6	3.1	3.6	3.1	-0.5
12 13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw qay/Ao Atw 1/hd	191.8 187.4 193.4 193.4 193.4 193.4 193.4 193.4 193.4 193.4 193.6	190.8 186.6 190.6 192.2 207.6 206.7 206.5 208.0 220.3 221.5 221.5 221.5 221.5 221.6 221.6 221.6 221.6 221.6 221.6 221.6 221.6	186.4 182.3 185.9 188.4 205.7 205.2 204.7 205.6 219.6 221.0 221.3 221.3 221.4 221.4 221.4 221.4 221.5 221.7 22	182.1 178.9 182.5 185.0 202.1 201.6 203.7 218.3 219.9 223.7 228.2 226.9 231.1 208.2 65,400 5.87	191.3 189.1 191.5 192.0 205.3 205.0 205.9 213.4 214.3 214.7 215.8 215.4 216.0 217.4 215.1 206.8 27,270 2.45
17 18 19 20 21 22 23 24 25	Atd tli tli(top) Pl tbp tca nc G	206.9 223.0 23.8 171.4 101.3 588 408,000	206.3 223.1 24.6 173.1 101.8 607 408,000 2.35	204.6 222.8 24.7 173.4 101.2 608 408,000 2.35	202.3 222.1 24.2 172.3 100.3 630 407,000 2.34	204.4 213.6 24.4 172.7 114.2 298.5 140,900 0.817
26	(44)0.14	0.910	0.911	0.912	0.912	0.924
27 28 29 30 31 32	(N _{Pr}) ^{2/3} N _{Re} Wa Qa Air, percent	3.260 0.00690 10,820 0 0	3.257 0.00706 10,860 0.1577 1.656 2.82	3.262 0.00716 10,810 0.463 4.81 7.78	3,270 0.00745 10,710 1.258 13.60 19.3	3.154 0.00975 4,100 0 0

NACA.

TABLE III. - SUMMARY OF DATA AND RESULTS; METHANOL WITH ENTRAINED AIR - Concluded

Item	Run	150A	150B
1034567890	Wc tc1 tc0 qc Ws P ts hfg qL	960 101:1 124.7 14,310 15.70 27.1 244.6 949.2 670 14,230	947 98.8 124.0 15,060 17.24 26.9 244.1 949.4 680 15,690
11	Deviation in heat balance (q _{8C} - q _C)(100)/q _{8C} , percent	-0.6	-4-1
12 13 14 15 16	Temperatures A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 D-1 D-2 D-3 D-4 tw 1/hd	182.3 183.5 183.2 184.3 204.1 204.8 204.8 211.8 213.8 213.8 214.5 214.7 216.3 214.7 216.3 21	179.6 178.0 180.5 181.4 198.5 201.2 199.9 200.5 207.0 209.8 209.3 210.0 208.4 210.2 212.2 208.0 199.7 31,200 2.80
17 18 19 20 21 22 23 24 25	Atd til til(top) Pl tbp tca hc G	201.0 211.4 24.4 172.7 112.9 323.6 141,800 0.821	196.9 206.9 25.3 174.6 111.4 359.0 139,800 0.810
26	(14 0.14 (14 (14 (14 (14 (14 (14 (14 (14 (14 (0.925	0.927
27 28 29 30 31 32	NPr) 2/3 NRe Wa Qa Air, percent	3.165 0.01059 4,080 0.0832 0.974 4.64	3.178 0.01202 3,992 0.2892 3.19 13.92

TABLE IV .- PHYSICAL PROPERTIES OF METHANOL

Temper	rature		_	<u>,</u>	$\left(N_{\rm Pr}\right)^{2/3}$				
(°c)	(°F)	μ	С	k	(MPr)	P	H	p	
0	32	1.955	0.559	0.1307	4.120	50.58	0.00	0.56	
10	50	1.670	•575	.1270	3.852	49.99	10.24	1.06	
20	6 8	1.438	•590	.1234	3 .61 4	49.40	20.72	1.85	
30	86	1.246	• 6 05	.1197	3.411	48.81	31.47	3.13	
40	104	1.088	. 622	.1161	3.240	48.23	42.52	5.09	
50	122	0.957	. 640	.1125	3.095	47.64	53.90	7.94	
60	140	. 845	• 6 60	.1088	2.973	47.05	6 5 • 63	12.23	
70	158	.752	• 6 83	.1052	2.878	46.46	77.74	18.15	
80	176	. 674	.707	.1015	2.804	45.87	90.26	26.04	
90	194	. 607	.731	.0979	2.740	45.29	110.20	36.68	
100	212	.549	• 757	-0943	2.689	44.70	116.60	50.60	
110	230					i.		69.20	

NACA,

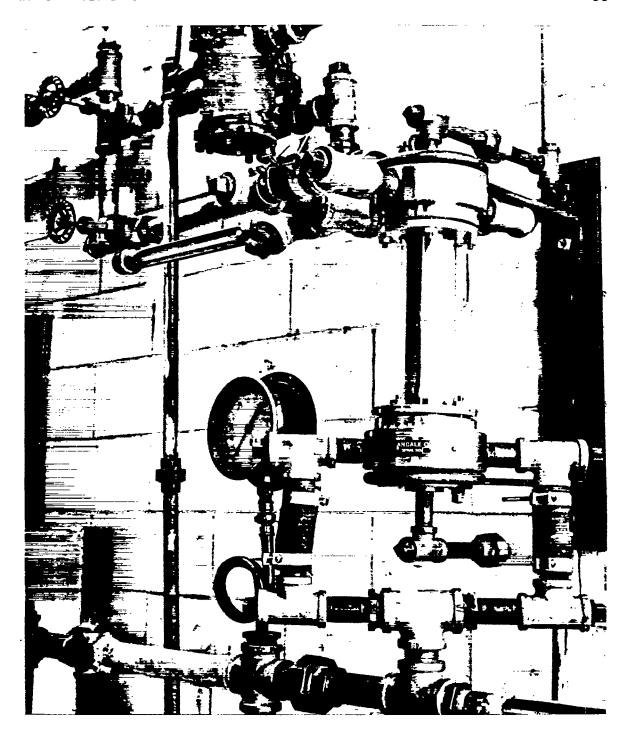


Figure 1.- Heat exchanger (unlagged).

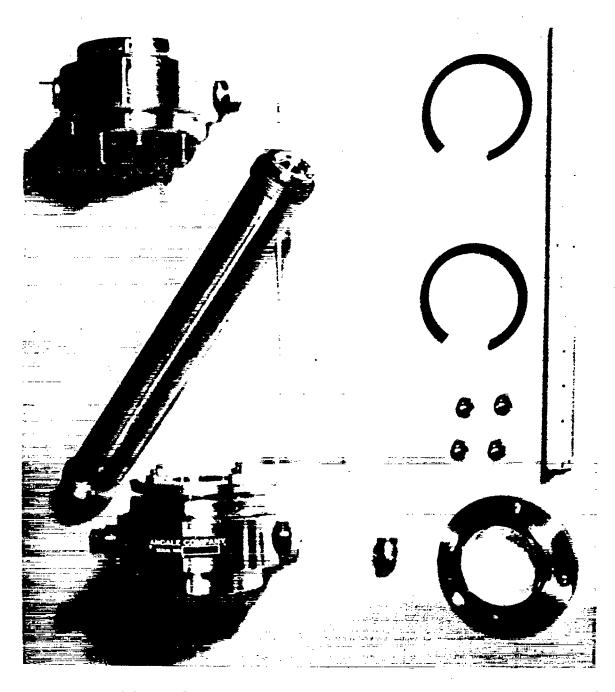


Figure 2.- Heat exchanger (disassembled).

				•
				-
				•
				-
		,		
				•
				~
•				

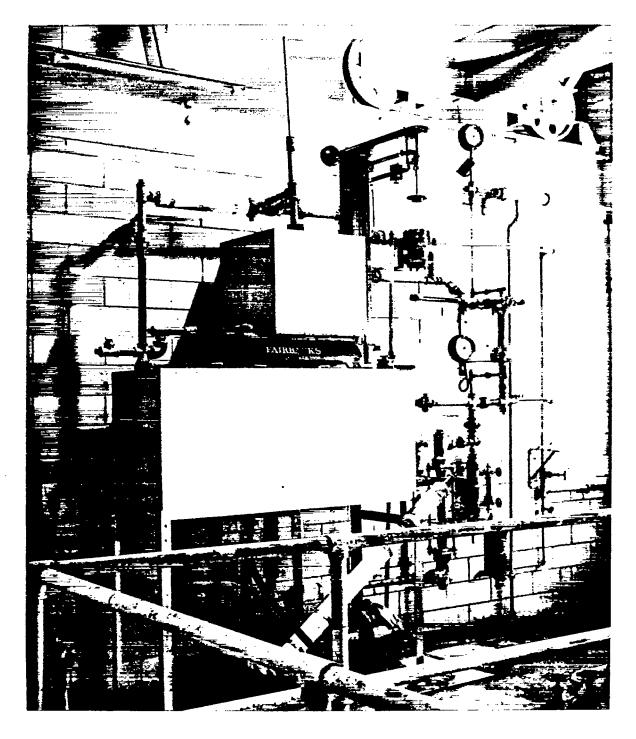


Figure 3.- View of test rig (unlagged).

				_
				•
·				•
				~

1

Figure 4.- Diagrammatic layout of apparatus.

Ç

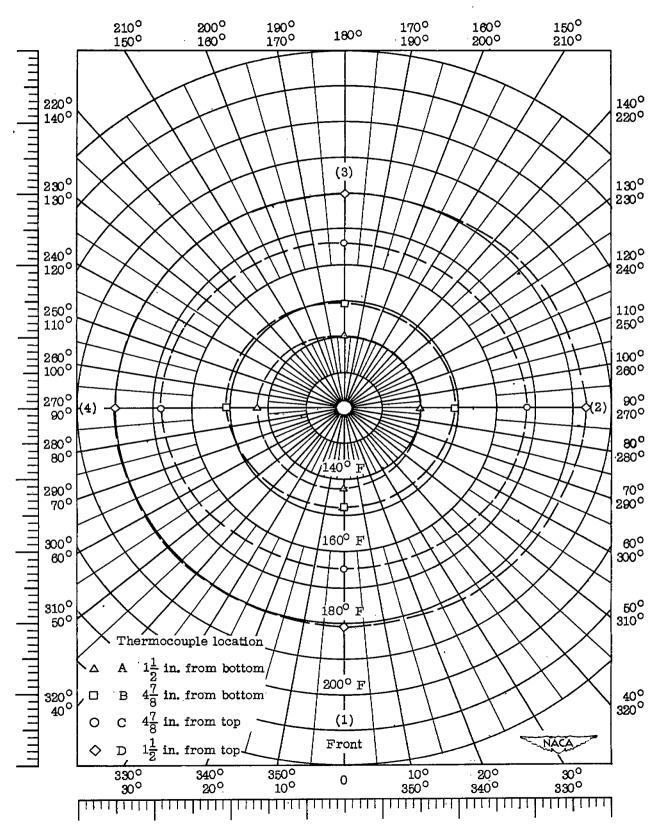


Figure 5.- Tube-wall temperature distribution. Data for run 59.

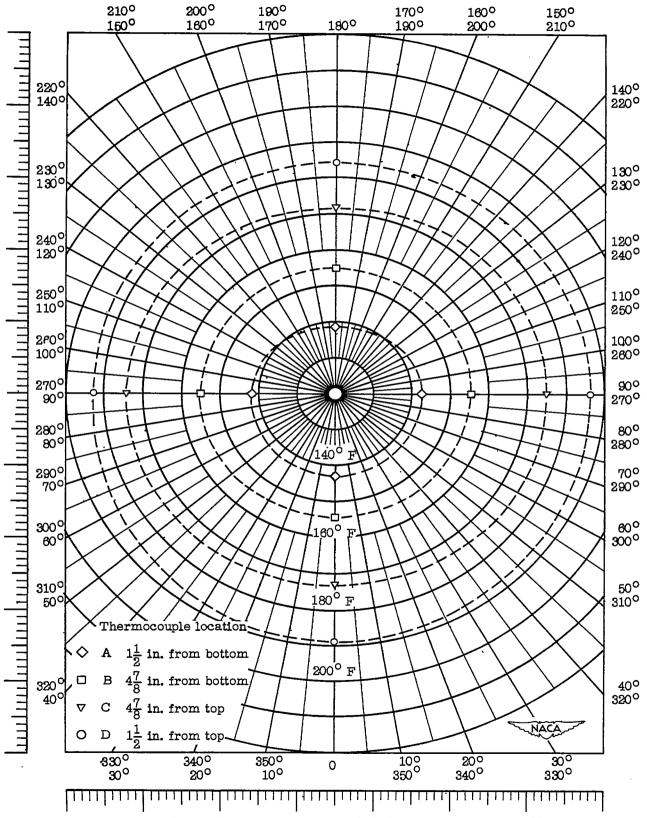


Figure 6.- Tube-wall temperature distribution. Data for run 93. Coolant, menthol.

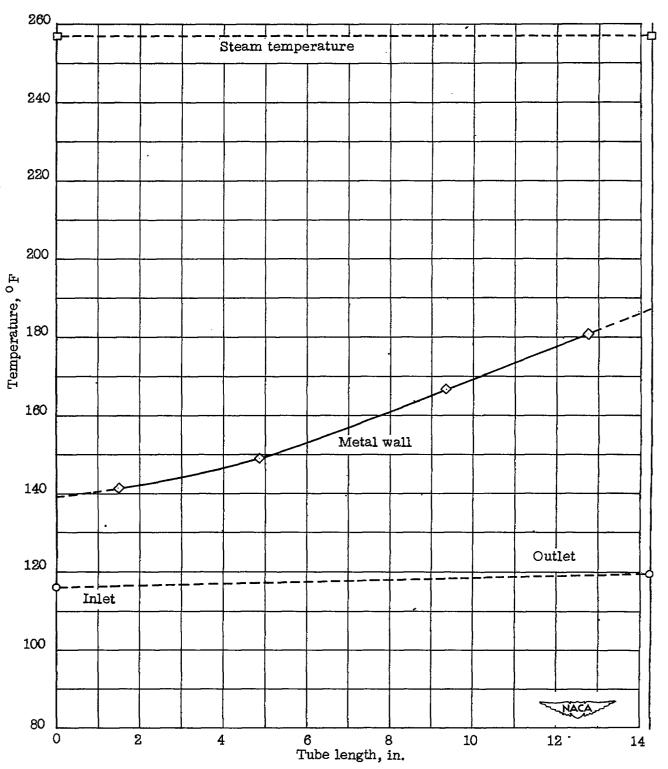


Figure 7.- Temperature distribution against tube length. Run 59. Coolant, water.

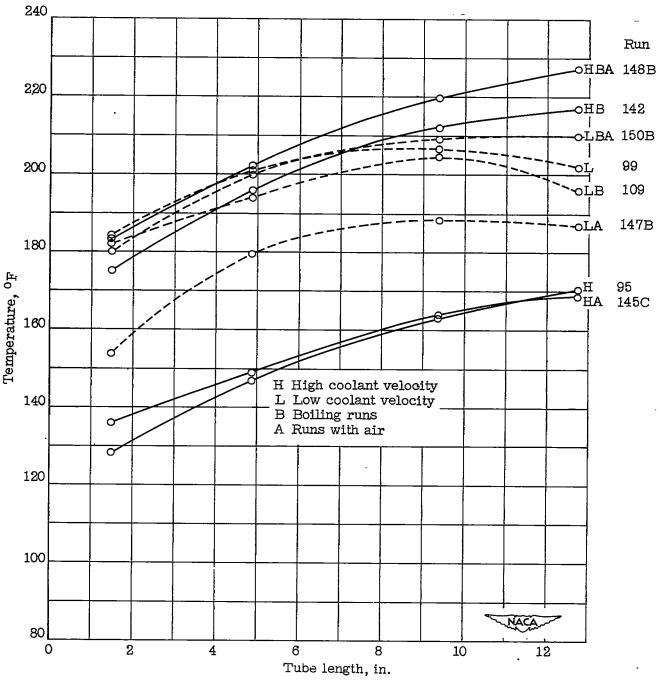


Figure 8.- Longitudinal temperature distribution for various typical runs. Coolant, methanol.

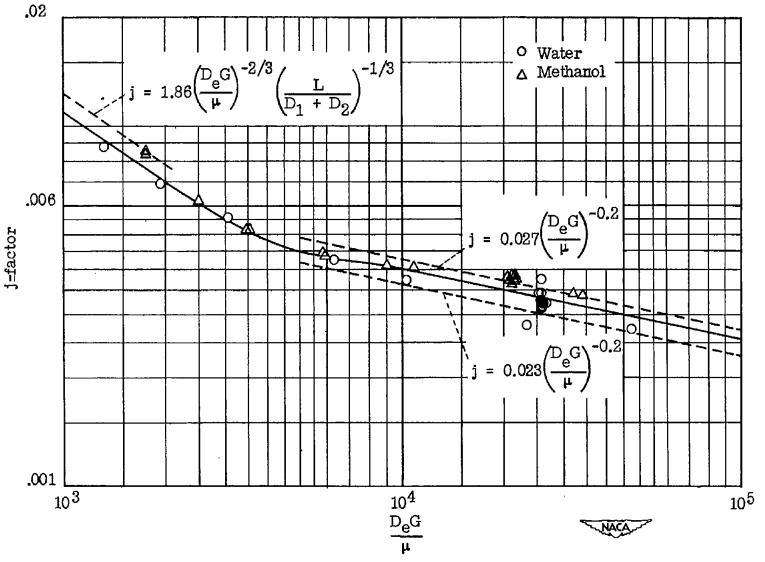


Figure 9.- j-factor against Reynolds number. Nonboiling data.

• •

+ .

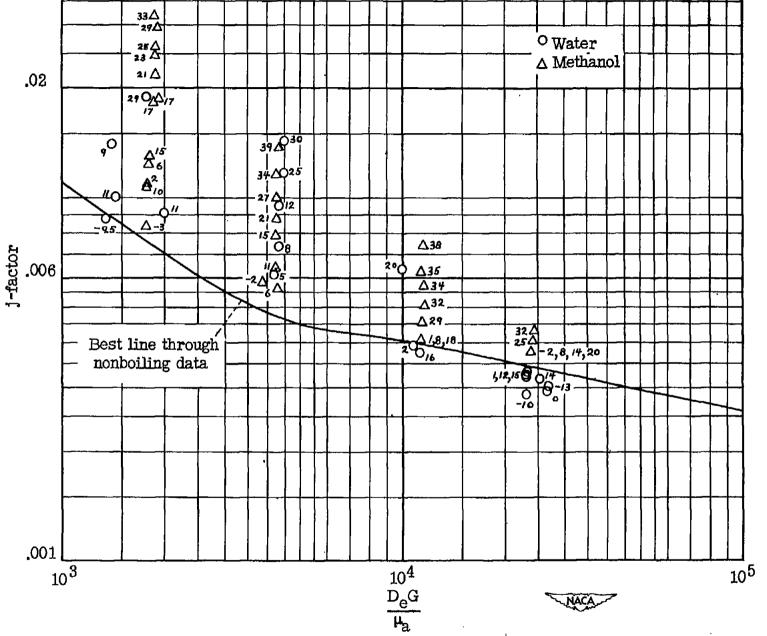


Figure 10.- j-factor against Reynolds number. Boiling data. Numbers denote $(t_{li} - t_{bp})$.

67

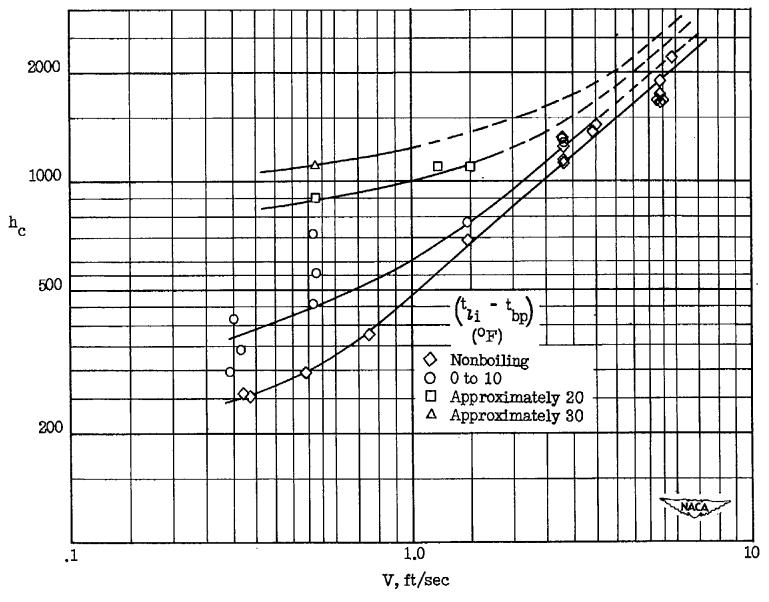


Figure 11.- Heat-transfer coefficient against coolant velocity for water.

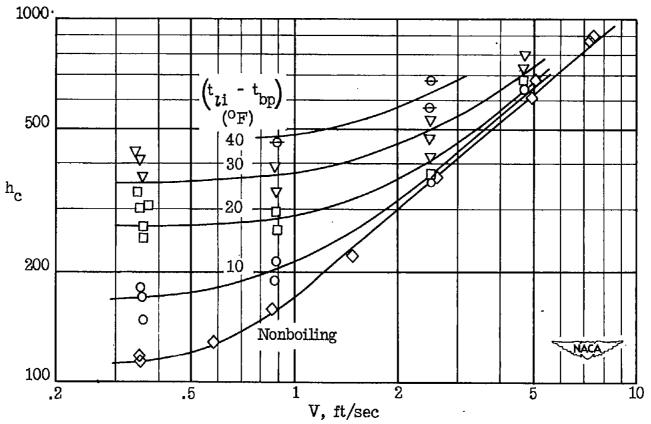


Figure 12.- Heat-transfer coefficients between cylinder and methanol as functions of coolant velocity. Effect of $(t_{li} - t_{bp})$ for runs without air.

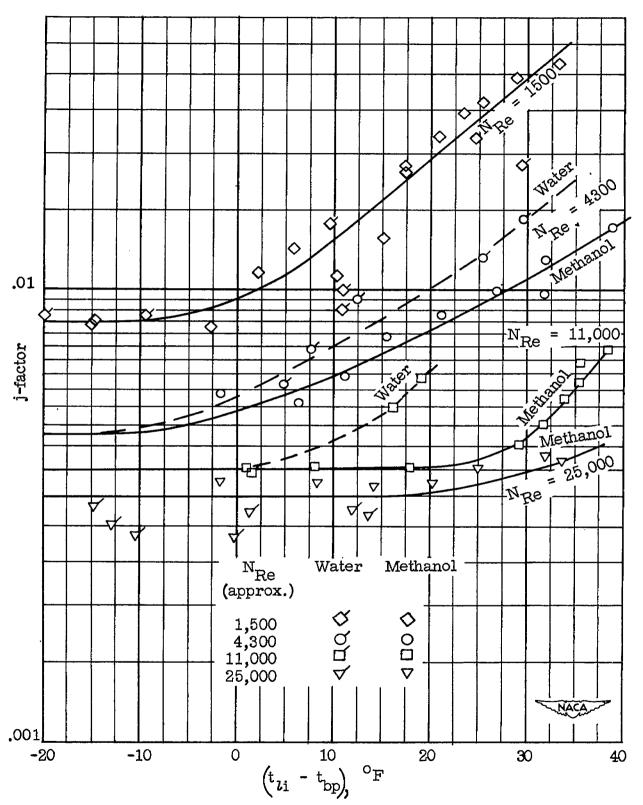


Figure 13.- j-factor against average temperature excess. Horizontal part at beginning of each curve corresponds to nonboiling value.

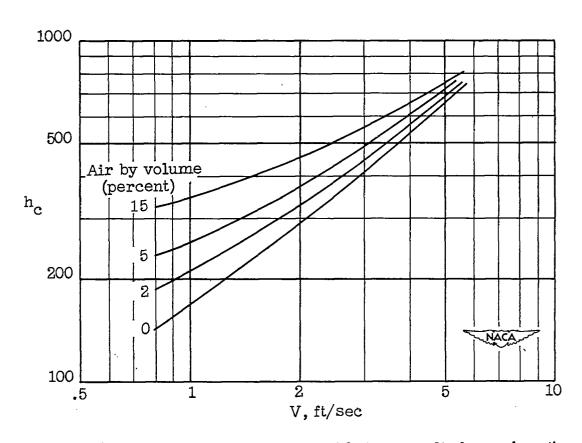


Figure 14.- Heat-transfer coefficient between cylinder and methanol as functions of coolant velocity. Effect of percent entrained air.

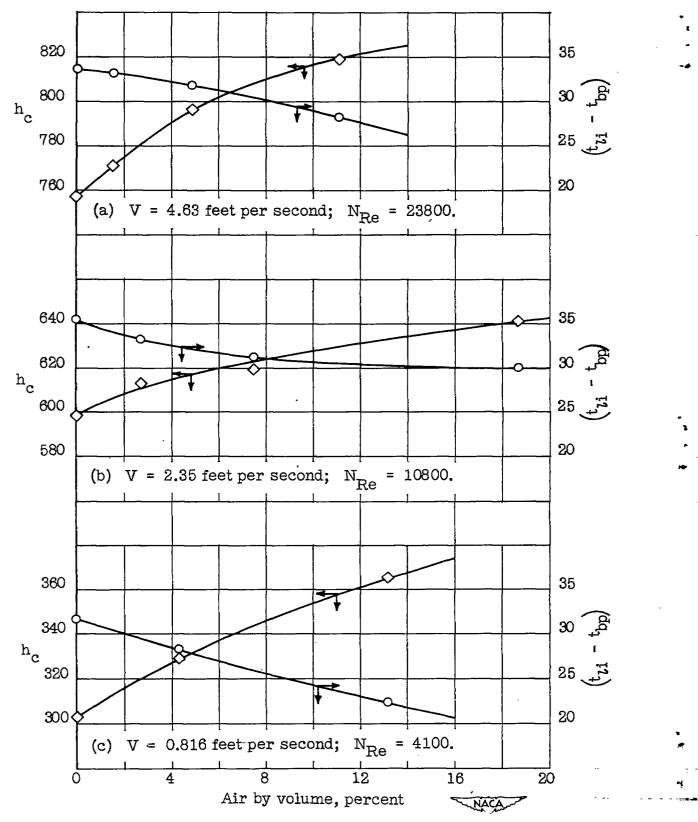


Figure 15.- Effect of percent of air by volume in heat exchanger for various series of boiling runs. Coolant, methanol.

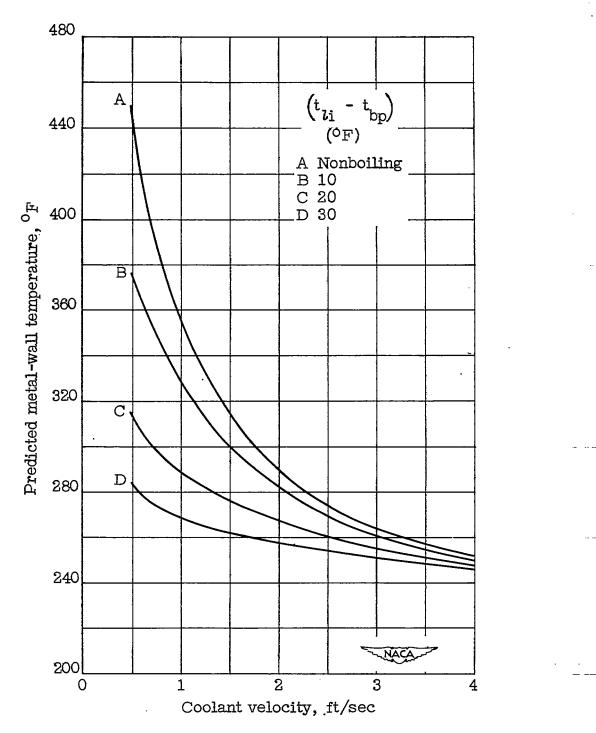


Figure 16.- Predicted metal temperature against coolant velocity. Heat flux, 100,000 Btu/(hr)(sq ft); temperature, 190° F; coolant, water.

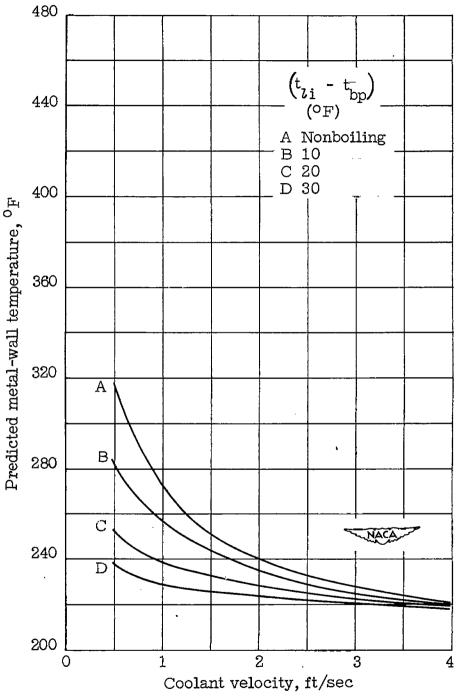


Figure 17.- Predicted metal temperature against coolant velocity. Heat flux, 50,000 Btu/(hr)(sq ft); temperature, 190° F; coolant, water.

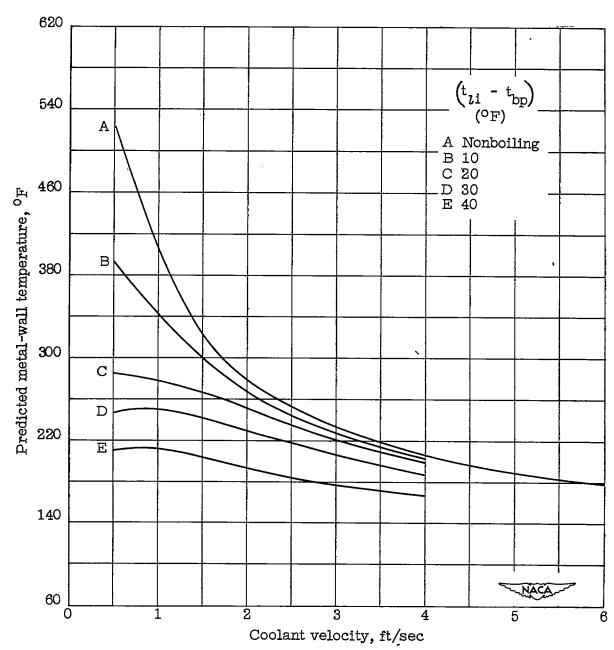


Figure 18.- Predicted metal-wall temperature against coolant velocity. Heat flux, 50,000 Btu/(hr)(sq ft); temperature, 110° F; coolant, methanol (no air).